Delayed feedback makes neuronal firing statistics non-Markovian

The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of impulses in communication lines between the neurons. In neurophysiological experiments, the times of neuronal firing are recorded but not the state of communication lines. Howeve...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Vidybida, A.K., Kravchuk, K.G.
Формат: Стаття
Мова:English
Опубліковано: Український математичний журнал 2012
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165260
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Delayed feedback makes neuronal firing statistics non-Markovian / A.K. Vidybida, K.G. Kravchuk // Український математичний журнал. — 2012. — Т. 64, № 12. — С. 1587-1609. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of impulses in communication lines between the neurons. In neurophysiological experiments, the times of neuronal firing are recorded but not the state of communication lines. However, future spiking moments substantially depend on the past positions of impulses in the lines. This suggests that the sequence of intervals between firing moments (interspike intervals, ISI) in the network can be non-Markovian. In the present paper, we analyze this problem for the simplest possible neural “network,” namely, for a single neuron with delayed feedback.