Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation
We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums kn=Σρ(1−(1−1ρ)n) over zeros of the Riemann xi-function and the derivatives are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivative...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165313 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation / S.K. Sekatski // Український математичний журнал. — 2014. — Т. 66, № 3. — С. 371–383. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums kn=Σρ(1−(1−1ρ)n) over zeros of the Riemann xi-function and the derivatives are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a, except a = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums kn,a=Σρ(1−(ρ−aρ+a−1)n) for any real a such that a < 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with a > 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines. |
---|