Projective method for the equation of risk theory in the arithmetic case

We consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In this statement, the problem of nonruin probability is naturally solved by the Wiener – Hopf method. Passing to generating functions and reducing the fundamental equation of risk t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Chernecky, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165330
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Projective method for the equation of risk theory in the arithmetic case / V.A. Chernecky // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 565-582. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In this statement, the problem of nonruin probability is naturally solved by the Wiener – Hopf method. Passing to generating functions and reducing the fundamental equation of risk theory to a Riemann boundary-value problem on the unit circle, we establish that this equation is a special one-sided discrete Wiener – Hopf equation whose symbol has a unique zero, and, furthermore, this zero is simple. On the basis of the constructed solvability theory for this equation, we justify the applicability of the projective method to the approximation of ruin probabilities in the spaces l₁⁺ and c₀⁺ . Conditions for the distributions of waiting times and claims under which the method converges are established. The delayed renewal process and stationary renewal process are considered, and approximations for the ruin probabilities in these processes are obtained