Projective method for the equation of risk theory in the arithmetic case

We consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In this statement, the problem of nonruin probability is naturally solved by the Wiener – Hopf method. Passing to generating functions and reducing the fundamental equation of risk t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Chernecky, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165330
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Projective method for the equation of risk theory in the arithmetic case / V.A. Chernecky // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 565-582. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165330
record_format dspace
spelling irk-123456789-1653302020-02-14T01:27:48Z Projective method for the equation of risk theory in the arithmetic case Chernecky, V.A. Статті We consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In this statement, the problem of nonruin probability is naturally solved by the Wiener – Hopf method. Passing to generating functions and reducing the fundamental equation of risk theory to a Riemann boundary-value problem on the unit circle, we establish that this equation is a special one-sided discrete Wiener – Hopf equation whose symbol has a unique zero, and, furthermore, this zero is simple. On the basis of the constructed solvability theory for this equation, we justify the applicability of the projective method to the approximation of ruin probabilities in the spaces l₁⁺ and c₀⁺ . Conditions for the distributions of waiting times and claims under which the method converges are established. The delayed renewal process and stationary renewal process are considered, and approximations for the ruin probabilities in these processes are obtained Розглядається дискретна модель функцiонування страхової компанiї, початковий капiтал якої може набувати довiльного цiлого значення. У такiй постановцi проблема обчислення ймовiрностi стiйкостi компанiї природно розв’язується методом Вiнера – Хопфа. При переходi до твiрних функцiй i зведеннi фундаментального рiвняння теорiї ризику до граничної задачi Рiмана на одиничному колi з’ясовано, що розглядуване рiвняння є особливим одностороннiм дискретним рiвнянням Вiнера – Хопфа, символ якого має єдиний нуль i цей нуль є простим. На базi побудованої теорiї розв’язностi цього рiвняння обґрунтовано застосування проективного методу до апроксимацiї ймовiрностей банкрутства у просторах l₁⁺ і c₀⁺. Отримано умови на розподiли часiв очiкування вимог i розмiрiв виплат для збiжностi методу. Розглянуто процес вiдновлення iз запiзненням i стацiонарний процес вiдновлення, а також наближення для ймовiрностей банкрутства у цих процесах 2013 Article Projective method for the equation of risk theory in the arithmetic case / V.A. Chernecky // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 565-582. — Бібліогр.: 17 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165330 368.01; 517.44; 519.6 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Chernecky, V.A.
Projective method for the equation of risk theory in the arithmetic case
Український математичний журнал
description We consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In this statement, the problem of nonruin probability is naturally solved by the Wiener – Hopf method. Passing to generating functions and reducing the fundamental equation of risk theory to a Riemann boundary-value problem on the unit circle, we establish that this equation is a special one-sided discrete Wiener – Hopf equation whose symbol has a unique zero, and, furthermore, this zero is simple. On the basis of the constructed solvability theory for this equation, we justify the applicability of the projective method to the approximation of ruin probabilities in the spaces l₁⁺ and c₀⁺ . Conditions for the distributions of waiting times and claims under which the method converges are established. The delayed renewal process and stationary renewal process are considered, and approximations for the ruin probabilities in these processes are obtained
format Article
author Chernecky, V.A.
author_facet Chernecky, V.A.
author_sort Chernecky, V.A.
title Projective method for the equation of risk theory in the arithmetic case
title_short Projective method for the equation of risk theory in the arithmetic case
title_full Projective method for the equation of risk theory in the arithmetic case
title_fullStr Projective method for the equation of risk theory in the arithmetic case
title_full_unstemmed Projective method for the equation of risk theory in the arithmetic case
title_sort projective method for the equation of risk theory in the arithmetic case
publisher Інститут математики НАН України
publishDate 2013
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165330
citation_txt Projective method for the equation of risk theory in the arithmetic case / V.A. Chernecky // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 565-582. — Бібліогр.: 17 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT cherneckyva projectivemethodfortheequationofrisktheoryinthearithmeticcase
first_indexed 2023-10-18T22:15:38Z
last_indexed 2023-10-18T22:15:38Z
_version_ 1796155053439975424