On estimate for numerical radius of some contractions

For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality w(T)≤||T||cos(π/(n+1)), where n≥2 is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Karaev, M.T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165421
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On estimate for numerical radius of some contractions / M.T. Karaev // Український математичний журнал. — 2006. — Т. 58, № 10. — С. 1335–1339. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality w(T)≤||T||cos(π/(n+1)), where n≥2 is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radius of contractions from more general classes.