Weakly SS-quasinormal minimal subgroups and the nilpotency of a finite group
A subgroup H is said to be an s-permutable subgroup of a finite group G provided that the equality HP =PH holds for every Sylow subgroup P of G. Moreover, H is called SS-quasinormal in G if there exists a supplement B of H to G such that H permutes with every Sylow subgroup of B. We show that H is w...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165441 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Weakly SS-quasinormal minimal subgroups and the nilpotency of a finite group / T. Zhao, X. Zhang // Український математичний журнал. — 2014. — Т. 66, № 2. — С. 187–194. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A subgroup H is said to be an s-permutable subgroup of a finite group G provided that the equality HP =PH holds for every Sylow subgroup P of G. Moreover, H is called SS-quasinormal in G if there exists a supplement B of H to G such that H permutes with every Sylow subgroup of B. We show that H is weakly SS-quasinormal in G if there exists a normal subgroup T of G such that HT is s-permutable and H \ T is SS-quasinormal in G. We study the influence of some weakly SS-quasinormal minimal subgroups on the nilpotency of a finite group G. Numerous results known from the literature are unified and generalized. |
---|