Positive Solutions of a Class of Operator Equations

Positive solutions of a class of matrix equations were studied by Bhatia, et al., Bull. London Math. Soc., 32, 214 (2000), SIAM J. Matrix Anal. Appl., 14, 132 (1993) and 27, 103–114 (2005), by Kwong, Linear Algebra Appl., 108, 177–197 (1988), and by Cvetkovi? and Milovanovi?, [Linear Algebra Appl.,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Cvetković, A.S., Milovanović, G.V., Stanić, M.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165477
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Positive Solutions of a Class of Operator Equations / A.S. Cvetković, G.V. Milovanović, M.P. Stanić // Український математичний журнал. — 2015. — Т. 67, № 2. — С. 245–260. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Positive solutions of a class of matrix equations were studied by Bhatia, et al., Bull. London Math. Soc., 32, 214 (2000), SIAM J. Matrix Anal. Appl., 14, 132 (1993) and 27, 103–114 (2005), by Kwong, Linear Algebra Appl., 108, 177–197 (1988), and by Cvetkovi? and Milovanovi?, [Linear Algebra Appl., 429, 2401–2414 (2008)]. Following the idea used in the last paper, we study a class of operator equations in infinite-dimensional spaces and prove that the positivity of solutions can be established for this class of equations under the condition that a certain rational function is positive semidefinite.