Про один клас розкладних і фундаментальних інверсних моноїдів
Пусть G — произвольная группа биекций на конечном множестве. Обозначим через I(G) множество всех частичных инъективных преобразований, каждое из которых включается в биекцию из G. I(G) является фундаментальной и разложимой инверсной полугруппой. В данной статье изучаются различные свойства полугрупп...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165491 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про один клас розкладних і фундаментальних інверсних моноїдів / В.Д. Дереч // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 780–786. — Бібліогр.: 14 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Пусть G — произвольная группа биекций на конечном множестве. Обозначим через I(G) множество всех частичных инъективных преобразований, каждое из которых включается в биекцию из G. I(G) является фундаментальной и разложимой инверсной полугруппой. В данной статье изучаются различные свойства полугруппы I(G). В частности, описаны автоморфизмы I(G) и найдены необходимые и достаточные условия для того, чтобы каждый стабильный порядок на I(G) был фундаментальным или антифундаментальным. |
---|