Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I
Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функці...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165501 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I / Е.А. Полулях // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 375–396. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функції f: M²→R ΓK−R(f) — фактор-простір M² по розбиттю, елементами якого є компоненти множин рівня функції f. Відомо, що для компактного M² простір ΓK−R(f) є топологічним графом. У даній роботі введено поняття графа з черенками, яке є узагальненням топологічного графа. Для некомпактного M² наведено три умови, при виконанні яких простір ΓK−R(f) є графом з черенками. |
---|