Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I
Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функці...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165501 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I / Е.А. Полулях // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 375–396. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-165501 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1655012020-02-14T01:28:20Z Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I Полулях, Е.А. Статті Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функції f: M²→R ΓK−R(f) — фактор-простір M² по розбиттю, елементами якого є компоненти множин рівня функції f. Відомо, що для компактного M² простір ΓK−R(f) є топологічним графом. У даній роботі введено поняття графа з черенками, яке є узагальненням топологічного графа. Для некомпактного M² наведено три умови, при виконанні яких простір ΓK−R(f) є графом з черенками. We consider continuous functions on two-dimensional surfaces satisfying the following conditions: they have a discrete set of local extrema; if a point is not a local extremum, then there exist its neighborhood and a number n ∈ ℕ such that a function restricted to this neighborhood is topologically conjugate to Re zⁿ in a certain neighborhood of zero. Given f : M² → ℝ, let Γ K−R (f) be a quotient space of M² with respect to its partition formed by the components of the level sets of f. It is known that, for compact M², the space Γ K−R (f) is a topological graph. We introduce the notion of graph with stalks, which generalizes the notion of topological graph. For noncompact M², we establish three conditions sufficient for Γ K−R (f) to be a graph with stalks. 2015 Article Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I / Е.А. Полулях // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 375–396. — Бібліогр.: 10 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165501 515.162, 517.51, 517.27 ru Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Статті Статті |
spellingShingle |
Статті Статті Полулях, Е.А. Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I Український математичний журнал |
description |
Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функції f: M²→R ΓK−R(f) — фактор-простір M² по розбиттю, елементами якого є компоненти множин рівня функції f. Відомо, що для компактного M² простір ΓK−R(f) є топологічним графом. У даній роботі введено поняття графа з черенками, яке є узагальненням топологічного графа. Для некомпактного M² наведено три умови, при виконанні яких простір ΓK−R(f) є графом з черенками. |
format |
Article |
author |
Полулях, Е.А. |
author_facet |
Полулях, Е.А. |
author_sort |
Полулях, Е.А. |
title |
Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I |
title_short |
Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I |
title_full |
Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I |
title_fullStr |
Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I |
title_full_unstemmed |
Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I |
title_sort |
графы кронрода – риба функций на некомпактных двумерных поверхностях. i |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/165501 |
citation_txt |
Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I / Е.А. Полулях // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 375–396. — Бібліогр.: 10 назв. — рос. |
series |
Український математичний журнал |
work_keys_str_mv |
AT polulâhea grafykronrodaribafunkcijnanekompaktnyhdvumernyhpoverhnostâhi |
first_indexed |
2023-10-18T22:16:14Z |
last_indexed |
2023-10-18T22:16:14Z |
_version_ |
1796155077139890176 |