Одноточкові розриви нарізно неперервних функцій на добутку двох компактних просторів
Досліджується існування нарізно неперервної функції f : X × Y→ ℝ з одноточковою множиною точок розриву, коли X і Y задовольняють умови типу компактності. Зокрема, показано, що для компактних просторів X і Y і неізольованих точок x₀∈X і y₀∈Y існує нарізно неперервна функція f : X × Y→ ℝ з множиною {(...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2005
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165560 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Одноточкові розриви нарізно неперервних функцій на добутку двох компактних просторів / В.В. Михайлюк // Український математичний журнал. — 2005. — Т. 57, № 1. — С. 94–101. — Бібліогр.: 10 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Досліджується існування нарізно неперервної функції f : X × Y→ ℝ з одноточковою множиною точок розриву, коли X і Y задовольняють умови типу компактності. Зокрема, показано, що для компактних просторів X і Y і неізольованих точок x₀∈X і y₀∈Y існує нарізно неперервна функція f : X × Y→ ℝ з множиною {(x₀,y₀)} точок розриву тоді і тільки тоді, коли в X і Y існують послідовності непорожніх функціонально відкритих множин, які збігаються до x₀ і y₀ відповідно. |
---|