2025-02-23T04:13:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-165573%22&qt=morelikethis&rows=5
2025-02-23T04:13:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-165573%22&qt=morelikethis&rows=5
2025-02-23T04:13:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T04:13:32-05:00 DEBUG: Deserialized SOLR response
Strong Convergence of Two-Dimensional Walsh–Fourier Series
We prove that certain means of quadratic partial sums of the two-dimensional Walsh–Fourier series are uniformly bounded operators acting from the Hardy space Hp to the space Lp for 0 < p < 1.
Saved in:
Main Author: | Tephnadze, G. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/165573 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T04:13:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-165573%22&qt=morelikethis
2025-02-23T04:13:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-165573%22&qt=morelikethis
2025-02-23T04:13:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T04:13:32-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Strong Convergence of Two-Dimensional Walsh–Fourier Series
by: G. Tephnadze
Published: (2013) -
On the strong summability of the Fourier–Walsh series in the Besov space
by: A. Igenberlina, et al.
Published: (2024) -
On the maximal operator of (C, α)-means of Walsh–Kaczmarz–Fourier series
by: Goginava, U., et al.
Published: (2010) -
On the summability of double Walsh–fourier series of functions of bounded generalized variation
by: Goginava, U.
Published: (2012) -
Almost everywhere convergence of Cesàro means of two variable Walsh – Fourier series with varying parameters
by: A. A.Abu Joudeh, et al.
Published: (2021)