Про розклади скалярного оператора в суму самоспряжених операторів зі скінченним спектром

Рассмотрена задача о классификации неэквивалентных представлений скалярного оператора λI в виде суммы k самосопряженных операторов с не более чем n₁,...,nk точками в спектрах. Доказано, что такая задача является *-дикой при некотором множестве спектров, если (n₁,...,nk) совпадает с одним из следующи...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Рабанович, В.І.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2015
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165613
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Про розклади скалярного оператора в суму самоспряжених операторів зі скінченним спектром / В.І. Рабанович // Український математичний журнал. — 2015. — Т. 67, № 5. — С. 701–716. — Бібліогр.: 21 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассмотрена задача о классификации неэквивалентных представлений скалярного оператора λI в виде суммы k самосопряженных операторов с не более чем n₁,...,nk точками в спектрах. Доказано, что такая задача является *-дикой при некотором множестве спектров, если (n₁,...,nk) совпадает с одним из следующих наборов: (2,...,2) при k ≥ 5,(2,2,2,3),(2,11,11),(5,5,5), (4,6,6). Показано, что для k ≥ 5 и спектров операторов, состоящих из точек 0 и 1, такие классификационные задачи являются *-дикими при всех рациональных значениях λ ϵ [2,3].