Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена

Вивчаються деякі питання наближення неперервних функцій, визначених на дійсній осі. В якості наближуючих агрегатів використовуються оператори Валле Пуссена. Встановлюються асимптотичні рівності для верхніх меж відхилень операторів Валле Пуссена від функцій малої гладкості класів Cˆψ¯ℜ....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Рукасов, В.И., Силин, Е.С.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2005
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165647
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена / В.И. Рукасов, Е.С. Силин // Український математичний журнал. — 2005. — Т. 57, № 3. — С. 394–399. — Бібліогр.: 14 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165647
record_format dspace
spelling irk-123456789-1656472020-02-16T01:25:56Z Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена Рукасов, В.И. Силин, Е.С. Статті Вивчаються деякі питання наближення неперервних функцій, визначених на дійсній осі. В якості наближуючих агрегатів використовуються оператори Валле Пуссена. Встановлюються асимптотичні рівності для верхніх меж відхилень операторів Валле Пуссена від функцій малої гладкості класів Cˆψ¯ℜ. We study some problems of the approximation of continuous functions defined on the real axis. As approximating aggregates, the de la Vallee-Poussin operators are used. We establish asymptotic equalities for upper bounds of the deviations of the de la Vallee-Poussin operators from functions of low smoothness belonging to the classes Cˆψ¯ℜ. 2005 Article Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена / В.И. Рукасов, Е.С. Силин // Український математичний журнал. — 2005. — Т. 57, № 3. — С. 394–399. — Бібліогр.: 14 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165647 517.5 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Рукасов, В.И.
Силин, Е.С.
Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена
Український математичний журнал
description Вивчаються деякі питання наближення неперервних функцій, визначених на дійсній осі. В якості наближуючих агрегатів використовуються оператори Валле Пуссена. Встановлюються асимптотичні рівності для верхніх меж відхилень операторів Валле Пуссена від функцій малої гладкості класів Cˆψ¯ℜ.
format Article
author Рукасов, В.И.
Силин, Е.С.
author_facet Рукасов, В.И.
Силин, Е.С.
author_sort Рукасов, В.И.
title Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена
title_short Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена
title_full Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена
title_fullStr Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена
title_full_unstemmed Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена
title_sort приближение непрерывных функций небольшой гладкости операторами валле пуссена
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165647
citation_txt Приближение непрерывных функций небольшой гладкости операторами Валле Пуссена / В.И. Рукасов, Е.С. Силин // Український математичний журнал. — 2005. — Т. 57, № 3. — С. 394–399. — Бібліогр.: 14 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT rukasovvi približenienepreryvnyhfunkcijnebolʹšojgladkostioperatoramivallepussena
AT silines približenienepreryvnyhfunkcijnebolʹšojgladkostioperatoramivallepussena
first_indexed 2025-07-14T19:21:30Z
last_indexed 2025-07-14T19:21:30Z
_version_ 1837651364685021184
fulltext UDK 517.5 V. Y. Rukasov, E. S. Sylyn (Slavqn. ped. un-t) PRYBLYÛENYE NEPRERÁVNÁX FUNKCYJ NEBOL|ÍOJ HLADKOSTY OPERATORAMY VALLE PUSSENA We study some problems of the approximation of continuous functions defined on the real line. As approximating aggregates, we use the de la Vallée Poussin operators. We establish asymptotic equalities for upper bounds of deviations of the de la Vallée Poussin operators from functions of small smoothness belonging to the classes ̂C ψ � . Vyvçagtsq deqki pytannq nablyΩennq neperervnyx funkcij, vyznaçenyx na dijsnij osi. V qkos- ti nablyΩugçyx ahrehativ vykorystovugt\sq operatory Valle Pussena. Vstanovlggt\sq asymptotyçni rivnosti dlq verxnix meΩ vidxylen\ operatoriv Valle Pussena vid funkcij malo] hladkosti klasiv Ĉψ � . V rabote [1] vveden¥ klass¥ Ĉψ� sledugwym obrazom. Pust\ � — mnoΩest- vo v¥pukl¥x vnyz pry vsex v ≥ 1 funkcyj ψ ( v ) takyx, çto lim ( )v v→∞ ψ = 0. KaΩdug funkcyg ψ ∈ � doopredelym na [ 0; 1 ) tak, çtob¥ poluçennaq funkcyq (kotorug, po-preΩnemu, oboznaçaem ψ ( ⋅ ) ) b¥la neprer¥vna dlq lg- boho v ≥ 0, ψ ( 0 ) = 0 y ee proyzvodnaq ψ ′ ( v ) = ψ ′ ( v + 0 ) ymela ohranyçennug varyacyg na promeΩutke [ 0; ∞ ). Tohda � oboznaçaet mnoΩestvo takyx funk- cyj. PodmnoΩestvo funkcyj ψ, dlq kotor¥x 1 ∞ ∫ ψ( )t t dt < ∞, oboznaçym � ′. Pust\ ψk ∈ �, k = 1, 2, tohda ψk + y ψk – — sootvetstvenno çetnoe y neçet- noe prodolΩenye funkcyy ψk , k = 1, 2. Dlq par¥ ( ψ1 , ψ2 ) opredelym funk- cyg ψ : ψ =df ψ1 + + i ψ2 – . (1) Pry πtom sootvetstvugwee preobrazovanye Fur\e funkcyy ψ ymeet vyd ψ̂ = = ψ̂1+ + i ψ̂2−, hde preobrazovanye Fur\e ponymaetsq v ob¥çnom sm¥sle: ˆ( )h t = 1 2π R ixth x e dx∫ −( ) . Dalee, pust\ L̂ — mnoΩestvo funkcyj f, zadann¥x na dejstvytel\noj osy R y ymegwyx koneçnug normu || f || = sup ( ) a R a a f t dt ∈ + ∫ 2π . Çerez ̂C ψ� oboznaçym podmnoΩestvo neprer¥vn¥x funkcyj f ∈ L̂ , predsta- vym¥x ravenstvom f ( x ) = A0 + R x t t dt∫ +ϕ ψ( ) ˆ ( ) =df A0 + ϕ ∗ ψ̂ , (2) v kotorom A0 — nekotoraq postoqnnaq, yntehral ponymaetsq kak predel po rasßyrqgwymsq symmetryçn¥m promeΩutkam, ϕ ∈ �, � ⊂ L̂ . Sleduq © V. Y. RUKASOV, E. S. SYLYN, 2005 394 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 3 PRYBLYÛENYE NEPRERÁVNÁX FUNKCYJ NEBOL|ÍOJ HLADKOSTY … 395 A.HY.HStepancu [2], funkcyg ϕ ( ⋅ ) v (2) naz¥vagt ψ -proyzvodnoj funkcyy f ( ⋅ ) y oboznaçagt f ψ ( )⋅ . Dlq pryblyΩenyq funkcyj f ∈ ̂C ψ� budem yspol\zovat\ operator¥ vyda Vσ, c = Vσ, c ( f, x, Λσ, c ) = A0 + f ψ ∗ λ ψσ,c ̂ , hde λσ, c ( t ) = 1 0 0 , , , , , . ≤ ≤ − − ≤ ≤ ≤      t c t c c t t σ σ σ σ Takye operator¥ rassmatryvalys\ A. Y. Stepancom v rabotax [1 – 4]. Oboznaçym ρσ, c ( f; x ) =df f ( x ) – Vσ, c ( f; x ), σ > 0, c > 0. Cel\g rabot¥ qvlqetsq yzuçenye asymptotyçeskoho povedenyq pry σ → ∞ velyçyn � �ˆ ; ,C V c ψ σ( ) = sup ( ; ) ˆ , ˆ f C c C f ∈ ⋅ ψ ρσ � , (3) hde v kaçestve mnoΩestva � yspol\zugt edynyçn¥j ßar SM prostranstva su- westvenno ohranyçenn¥x funkcyj M (v πtom sluçae Ĉ Mψ = Ĉ∞ ψ), a takΩe klass¥ Hω : Hω = ϕ ω ϕ ω∈ ≤{ }ˆ : ( ; ) ( )C t t , hde Ĉ — podmnoΩestvo neprer¥vn¥x funkcyj yz L̂ , ω ( ϕ; t ) — modul\ neprer¥vnosty funkcyy ϕ ( ⋅ ), ω ( t ) — fyk- syrovann¥j modul\ neprer¥vnosty (v πtom sluçae Ĉψ� = Ĉ Hψ ω). Approksymacyonn¥e svojstva operatorov Vσ, c pry c = σ – 1 yssledovan¥ A.HY. Stepancom v rabotax [1 – 5], pry 0 < c ≤ σ – 1 — odnym yz avtorov dannoj stat\y [6, 7]. V peryodyçeskom sluçae analohyçnaq zadaça dlq summ Fur\e re- ßena v [8, 9], dlq summ Valle Pussena — v [10, 11]. Narqdu s operatoramy Vσ, c ( f; x ) v rabote [1] vveden¥ operator¥ vyda V fcσ, * ( ) = V f xc cσ σ, * , *( , , )Λ = A0 + f ψ ∗ λ ψσ, * c ̂ , hde λσ, * ( )c t = λ σ σ ψ σ ψ σ σ, , , , , ( ) ( ) , . c t c t c c t t c t ∈[ ] ∞[ ] − − − ( ) ≤ ≤     0 1 ∪ sign (4) Sleduq [2], yz mnoΩestva � v¥delym podmnoΩestva �0 y � C . KaΩdoj funkcyy ψ ∈ � sopostavym funkcyy η ( t ) = ψ ψ− /( )1 2( )t y µ ( t ) = t t t/ −( )η( ) , t ≥ 1. Tohda � 0 = ψ µ ψ∈ < <{ }� : ( , )0 1t K , � C = ψ ∈{ � : 0 2< ≤K tµ ψ( , ) ≤ ≤ K3 } , Ki = const, i = 1, 2, 3 . Polahagt �0 = � 0 ∩ � , ′� 0 = � 0 ∩ � ′, � C = = � C ∩ �. Sformulyruem osnovnoe utverΩdenye πtoj rabot¥. Teorema. Pust\ ψ1 ∈ �0 y ψ2 ∈ ′� 0 . Tohda dlq lgb¥x σ y h = h ( σ ), σ > h ≥ 1, pry σ → ∞ � ˆ ; ,C V h∞ −( )ψ σ σ = 2 2 π ψ σ ∞ ∫ ( )t t dt + 4 2π ψ σ σ ( ) ln h + O ( 1 ) A ( ψk , σ, h ), (5) ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 3 396 V. Y. RUKASOV, E. S. SYLYN � ˆ ; ,C H V h ψ ω σ σ−( ) = = Θω π π ω σ ψ σ ψ σ π σ ω σ 1 2 2 2 0 1 1 2 2 0 2 ∫ ∫ ∫    +           ∞ / t s st ds dt h t t dt( )sin ( ) ln sin + + O ( 1 ) A ( ψk , σ, h )ω σ 1 −    h , (6) hde A ( ψk , σ, h ) = k k kh = ∑ − −( ) 1 2 ψ σ ψ σ( ) ( ) + ψ σ( ) , Θω ∈ [ 2 / 3; 1 ], pryçem Θω = 1, esly ω ( t ) — v¥pukl¥j modul\ neprer¥vnosty, y O ( 1 ) — ve- lyçyna, ravnomerno ohranyçennaq po σ y h. Dokazatel\stvo. Pust\ f ∈ ̂C ψ�, tohda dlq velyçyn¥ ρσ, c ( f, x ) ymeet mesto ravenstvo ρσ, c ( f, x ) = R cf x t t dt∫ +ψ στ( ) ( ), *̂ + R cf x t d t dt∫ +ψ σ( ) ˆ ( ), , hde τσ, * ( )c t = 1 −( )λ ψσ, * ( ) ( )c t t , ˆ ( ),d tcσ = 1 2( ) ( ) ( ) ( ) ( ) ( ) σ π ψ ψ σ ψ ψ σ σ − − −( ) + − − −( )[ ]∫ − c s c s e s e dt c ist ist . Uprostym eho, v¥delyv hlavn¥e çasty y ocenyv ostatky. RassuΩdaq po sxeme, yzloΩennoj v rabote [12, c. 218 – 235], yspol\zuq rezul\tat¥ rabot¥ [7] y pola- haq c = σ – h, a ∈ ( 0; π σ / h ), poluçaem ρσ, σ – h ( f, x ) = – ψ σ π δ σ σ π 1( ) ( ) sin a t h x t t t dt / /≤ ≤ ∫ + + + ψ σ π δ σ σ π 2( ) ( ) cos a t h x t t t dt / /≤ ≤ ∫ + + + 1 2π δ ψ σ σt a x t s st ds dt ≤ ∞ / ∫ ∫+( ) ( )sin + O ( 1 ) A ( ψk , σ, h ) ζ ( � ), hde δ ( x + t ) = f x f x t f C H f x t f C ψ ψ ψ ω ψ ψ ( ) ( ), ˆ , ( ), ˆ , − + ∈ + ∈     ∞ esly esly ζ ( � ) = ω σ ψ ω ψ 1 1 −     ∈ ∈     ∞ h f C H f C , ˆ , , ˆ . esly esly Yspol\zuq ravenstvo a sin α – b cos α = a b2 2+ −sin( )γ α , γ = arctg ( b / a ), naxodym ρσ, σ – h ( f, x ) = – ψ σ π δ σ γ σ π σ( ) ( ) sin( ) a t h x t t t dt / /≤ ≤ ∫ + − + ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 3 PRYBLYÛENYE NEPRERÁVNÁX FUNKCYJ NEBOL|ÍOJ HLADKOSTY … 397 + 1 2π δ ψ σ σt a x t s st ds dt ≤ ∞ / ∫ ∫+( ) ( )sin + O ( 1 ) A ( ψk , σ, h ) ζ ( � ), hde γσ = arctg ( ψ2 ( σ ) / ψ1 ( σ ) ). Najdem verxnye hrany � �ˆ ; ,C V h ψ σ σ−( ) . Pust\ [12, c. 232] xk = ( k π + γσ ) / σ, tk = xk – π / 2 σ, k = 0, ± 1, ± 2, … , σ ∈ R; k0 — takoe znaçenye k, dlq kotoroho tk0 — blyΩajßaq sprava ot toçky ( a + + π ) / σ toçka, v kotoroj sin ( σ t – γσ ) = 1, a k1 — naybol\ßee yz znaçenyj k takyx, çto tk < π / h; k2 — takoe çyslo, çto tk2 — blyΩajßaq sleva ot toçky – ( a + π ) / σ toçka sredy tex, v kotor¥x sin ( σ t – γσ ) = – 1, a k3 — naymen\ßee yz znaçenyj takyx, çto tk > – π / h. Opredelym funkcyg lσ ( t ) posredstvom ra- venstv lσ ( t ) = xk , t ∈ [ tk , tk + 1 ], k = k0 , … , k1 – 1, k = k3 , k3 + 1, … , k2 – 1, i3, 1 = = [ t3 , t2 ] ∪ [ t0 , t1 ]. Uçyt¥vaq ynvaryantnost\ klassov ̂C ψ� otnosytel\no sdvyha arhumenta, naxodym � ˆ ; ,C V h∞ −( )ψ σ σ ≤ t a s st ds dt ≤ ∞ / ∫ ∫ σ σ π ψ1 2( )sin + + ψ σ π σ γσ σ ( ) sin( ) ( ) ,i t l t dt 3 1 ∫ − + O ( 1 ) A ( ψk , σ, h ). (7) Sleduq rassuΩdenyqm yz rabot¥ [12, c. 236], ubeΩdaemsq, çto dlq funkcyy ϕ∗ ( t ), sovpadagwej na mnoΩestve −[ ]/ /a aσ σ; ∪ i3, 1 s funkcyej ϕσ ( t ), hde ϕσ ( t ) = sign sign σ σ σ ψ σ σ γ ∞ ∫ ≤ − ∈       2 3 1 ( )sin , , sin( ) ( ) , ,, s st ds t a t l t t i sootnoßenye (7) obratytsq v ravenstvo. Dlq zaverßenyq dokazatel\stva formul¥ (5) ostaetsq ubedyt\sq, çto 1 2π ψ σ σt a s st ds dt ≤ ∞ / ∫ ∫ ( )sin = 2 2 π ψ σ ∞ ∫ ( )t t dt + O ( 1 ) ψ σ( ) , i t l t dt 3 1, sin( ) ( )∫ −σ γσ σ = 4 π σ ln h + O ( 1 ). Dlq πtoho vospol\zuemsq sootnoßenyqmy (5.5.4) y (5.5.5) yz [12, c. 236], pry do- kazatel\stve kotor¥x peryodyçnost\ funkcyy f ( t ) y vklgçenye σ ∈ N, po su- westvu, ne yspol\zovalys\. DokaΩem teper\ formulu (6). Pust\ f ∈ Ĉ Hψ ω , tohda, uçyt¥vaq opredele- nye funkcyy lσ ( t ), naxodym � ˆ , ,C H V h ψ ω σ σ−( ) ≤ ψ σ π ϕ σ γ ϕ σ ω ( ) sup ( )sin( ) k k k k H t t x t t dt k k = − ∈ ∑ ∫     − + 3 2 11 1 + + k k k k H t t x t t dt k k = − ∈ ∑ ∫ + −    0 1 11 1 sup ( )sin( ) ϕ σ ω ϕ σ γ + ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 3 398 V. Y. RUKASOV, E. S. SYLYN + 1 0 2π ϕ ϕ ψ ϕ σ σω sup ( ) ( ) ( )sin ∈ ≤ ∞ / ∫ ∫−( ) H t a t s st ds dt + A ( ψk , σ, h ). V [12, c. 239, 240] b¥ly poluçen¥ neravenstva (5.5.16) y (5.5.17), pry πtom, po suty, ne yspol\zovalos\ to, çto n ∈ N y ϕ — peryodyçeskaq funkcyq. Poπtomu � ˆ ; ,C H V h ψ ω σ σ−( ) ≤ ψ σ π ω σ π σ ( ) ( )sin 0 2 1 1 2 1 1 3 2 0 1/ ∫ ∑ ∑ = − = − −      t t dt x xk k k k k k k k + + 1 2 0 2π ω ψ σ σ a t s st ds dt / ∫ ∫ ∞ ( ) ( )sin + A ( ψk , σ, h ). (8) Çtob¥ postroyt\ funkcyg f * ∈ Ĉ Hψ ω , dlq kotoroj znaçenye ρσ, h ( f; x ) sov- padaet s pravoj çast\g (8), budem rassuΩdat\ po analohyy s [12, c. 240; 241]. PoloΩym ϕk ( t ) = 1 2 2 1 2 2 1 ω ω ( ) , ; , ( ) , ; , x t t t x t x t x t k k k k k k −( ) ∈[ ] − −( ) ∈[ ]      + k = k k3 2 1, − , k = k k0 1 1, − , ϕ+ ( t ) = ( ) ( )− −1 0k k k tϕ – 1 2 2ω π σ ω σ     −         a , t ∈ t tk k; +[ ]1 , k = k k0 1 1, − , ϕ– ( t ) = ( ) ( )− − +1 2 1k k k tϕ + 1 2 2ω π σ ω σ     −         a , t ∈ t tk k; +[ ]1 , k = k k3 2 1, − , ˆ ( )ϕ t = 1 2 2 1 2 2 1 2 2 0 0 0 1 2 3 2 ω σ ω σ σ ϕ ω σ σ ϕ t t a a t a t t t t t a t t a t t t t t k k k k k k ( ) ≤ / /( ) ∈ /[ ] ∈[ ] − /( ) ∈ − /[ ] ∈[ ]             + − , , , ; , ( ), ; , , ; , ( ), ; , .dlq ostal\n¥x Funkcyq f *, ψ -proyzvodnaq kotoroj sovpadaet s funkcyej ˆ ( )ϕ t , qvlqetsq yskomoj πkstremal\noj funkcyej, poskol\ku esly ω ( t ) — v¥pukl¥j modul\ neprer¥vnosty, to ˆ ( )ϕ t ∈ Hω y, kak pokaz¥vagt neposredstvenn¥e podsçet¥, dlq funkcyy f * sootnoßenye (8) stanovytsq ravenstvom. Esly Ωe ω ( t ) — proyzvol\n¥j modul\ neprer¥vnosty, to sootnoßenye (8) budet ravenstvom s nekotor¥m mnoΩytelem Θω ∈ 2 3 1/[ ]; . UbeΩdaqs\ v tom, çto k k k kx= − ∑ 3 2 1 1 + k k k kx= − ∑ 0 1 1 1 = 4 π σ ln h + O ( 1 ), zaverßaem dokazatel\stvo sootnoßenyq (6). Sledstvye. Pust\ ψ1 ∈ �0 , ψ2 ∈ �C y limσ σ→∞ /h = 0. Tohda dlq lgb¥x σ y h = h ( σ ), σ > h ≥ 1, pry σ → ∞ v¥polnqgtsq asymptotyçeskye ravenstva ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 3 PRYBLYÛENYE NEPRERÁVNÁX FUNKCYJ NEBOL|ÍOJ HLADKOSTY … 399 � ˆ ; ,C V h∞ −( )ψ σ σ = 4 2π ψ σ σ ( ) ln h + O ( 1 ) ψ σ( ) , (9) � ˆ ; ,C H V h ψ ω σ σ−( ) = 2 2 2 0 2Θω πψ σ π σ ω σ ( ) ln sin h t t dt / ∫     + O ( 1 ) ψ σ( ) ω σ 1    , dagwye reßenye zadaçy Kolmohorova – Nykol\skoho (sm. [8]) dlq operatorov Valle Pussena na klassax Ĉ∞ ψ y Ĉ Hψ ω sootvetstvenno. Zametym, çto esly ψ 1 ∈ � C , to ravenstvo (9) sovpadaet s rezul\tatom teorem¥ 2 [14]. 1. Stepanets A. I., Wang Kunyang, Zhang Xirong. Approximation of locally integrable function on the real line // Ukr. mat. Ωurn. – 1999. – 51, # 11. – S. 1549 – 1561. 2. Stepanec A. Y. Klass¥ funkcyj, zadann¥x na dejstvytel\noj osy, y yx pryblyΩenye ce- l¥my funkcyqmy. I // Tam Ωe. – 1990. – 42, # 1. – S. 102 – 112. 3. Stepanec A. Y. Klass¥ funkcyj, zadann¥x na dejstvytel\noj osy, y yx pryblyΩenye ce- l¥my funkcyqmy. II // Tam Ωe. – # 2. – S. 210 – 222. 4. Stepanec A. Y. PryblyΩenye operatoramy Fur\e funkcyj, zadann¥x na dejstvytel\noj osy // Tam Ωe. – 1988. – 40, # 2. – S. 198 – 209. 5. Stepanec A. Y. PryblyΩenye v prostranstvax lokal\no yntehryruem¥x funkcyj // Tam Ωe. – 1994. – 46, # 5. – S. 597 – 625. 6. Rukasov V. Y. PryblyΩenye operatoramy Valle Pussena funkcyj, zadann¥x na dejstvy- tel\noj osy // Tam Ωe. – 1992. – 44, # 5. – S. 682 – 691. 7. Rukasov V. Y. PryblyΩenye neprer¥vn¥x funkcyj operatoramy Valle Pussena // Tam Ωe. – 2003. – 55, # 3. – S. 414 – 424. 8. Stepanec A. Y. Klassyfykacyq y pryblyΩenye peryodyçeskyx funkcyj. – Kyev: Nauk. dumka, 1987. – 268 s. 9. Stepanec A. Y. PryblyΩenye ψ -yntehralov peryodyçeskyx funkcyj summamy Fur\e (ne- bol\ßaq hladkost\). II // Ukr. mat. Ωurn. – 1998. – 50, # 3. – S. 388 – 400. 10. Rukasov V. Y., Novykov O. A., Çajçenko S. O. PryblyΩenye klassov peryodyçeskyx funkcyj s maloj hladkost\g summamy Valle Pussena // Teoriq nablyΩennq funkcij ta sumiΩni pytannq: Pr. In-tu matematyky NAN Ukra]ny. – 2002. – 35. – S. 119 – 133. 11. Rukasov V. Y., Çajçenko S. O. PryblyΩenye neprer¥vn¥x peryodyçeskyx funkcyj summa- my Valle Pussena (nebol\ßaq hladkost\) // Tam Ωe. – S. 134 – 150. 12. Stepanec A. Y. Metod¥ teoryy pryblyΩenyj: V 2 t. – Kyev: Yn-t matematyky NAN Ukrayn¥, 2002. – T. 1. – 426 s. 13. Rukasov V. Y., Çajçenko S. O. PryblyΩenye klassov C ψ Hω summamy Valle Pussena // Ukr. mat. Ωurn. – 2002. – 54, # 5. – S. 681 – 691. 14. Rukasov V. Y., Sylyn E. S. PryblyΩenye neprer¥vn¥x funkcyj operatoramy Valle Pus- sena // Ekstremal\ni zadaçi teori] funkcij ta sumiΩni pytannq: Pr. In-tu matematyky NANHUkra]ny. – 2003. – 46. – S. 192 – 208. Poluçeno 12.02.2004 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 3