Вагові модулі гладкості і знакозберігаюче наближення

Розглядається неперервна функція, яка скінченне число разів на відрізку змінює знак, i ставиться задача про її наближення многочленом, який успадковує знак функції. Для такого наближення отримано, коли це можливо, оцінки типу Джексона, які включають модифіковані вагові модулі гладкості типу Діціана...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Смаженко, І.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2005
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165648
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Вагові модулі гладкості і знакозберігаюче наближення / І.В. Смаженко // Український математичний журнал. — 2005. — Т. 57, № 3. — С. 400–420. — Бібліогр.: 11 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглядається неперервна функція, яка скінченне число разів на відрізку змінює знак, i ставиться задача про її наближення многочленом, який успадковує знак функції. Для такого наближення отримано, коли це можливо, оцінки типу Джексона, які включають модифіковані вагові модулі гладкості типу Діціана - Тотіка. В деяких випадках константи в цих оцінках суттєво залежать від розташування точок зміни знаку функції. Наведено приклади функцій, для яких ці константи принципово не можуть бути покращені. Крім того, доводяться теореми, аналогічні в деякому сенсі оберненим теоремам наближення без обмежень.