Some properties of multivalent functions associated with a certain operator

We obtain certain subordinations and superordinations results involving a new operator. By means of the new introduced operator Cλp,n(a, c)f(z), for certain multivalent functions in the open unit disc, we establish differential Sandwich Theorem

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: He, P., Zhang, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165708
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some properties of multivalent functions associated with a certain operator / P. He, D. Zhang // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1580–1584. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165708
record_format dspace
spelling irk-123456789-1657082020-02-17T01:25:44Z Some properties of multivalent functions associated with a certain operator He, P. Zhang, D. Короткі повідомлення We obtain certain subordinations and superordinations results involving a new operator. By means of the new introduced operator Cλp,n(a, c)f(z), for certain multivalent functions in the open unit disc, we establish differential Sandwich Theorem Отримано деякi субординацiї i результати для суперординацiй iз використанням нового оператора. З допомогою введеного оператора Cλp,n(a, c)f(z) доведено диференцiальну сендвiч-теорему для багатозначних функцiй у вiдкритому одиничному крузi. 2013 Article Some properties of multivalent functions associated with a certain operator / P. He, D. Zhang // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1580–1584. — Бібліогр.: 10 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165708 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
He, P.
Zhang, D.
Some properties of multivalent functions associated with a certain operator
Український математичний журнал
description We obtain certain subordinations and superordinations results involving a new operator. By means of the new introduced operator Cλp,n(a, c)f(z), for certain multivalent functions in the open unit disc, we establish differential Sandwich Theorem
format Article
author He, P.
Zhang, D.
author_facet He, P.
Zhang, D.
author_sort He, P.
title Some properties of multivalent functions associated with a certain operator
title_short Some properties of multivalent functions associated with a certain operator
title_full Some properties of multivalent functions associated with a certain operator
title_fullStr Some properties of multivalent functions associated with a certain operator
title_full_unstemmed Some properties of multivalent functions associated with a certain operator
title_sort some properties of multivalent functions associated with a certain operator
publisher Інститут математики НАН України
publishDate 2013
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/165708
citation_txt Some properties of multivalent functions associated with a certain operator / P. He, D. Zhang // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1580–1584. — Бібліогр.: 10 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT hep somepropertiesofmultivalentfunctionsassociatedwithacertainoperator
AT zhangd somepropertiesofmultivalentfunctionsassociatedwithacertainoperator
first_indexed 2025-07-14T19:35:46Z
last_indexed 2025-07-14T19:35:46Z
_version_ 1837652244763246592
fulltext UDC 517.5 P. He, D. Zhang (Honghe Univ., China) SOME PROPERTIES OF MULTIVALENT FUNCTIONS ASSOCIATED A CERTAIN OPERATOR* ДЕЯКI ВЛАСТИВОСТI БАГАТОЗНАЧНИХ ФУНКЦIЙ, АСОЦIЙОВАНИХ З ОПЕРАТОРОМ We obtain certain subordinations and superordinations results involving a new operator. By means of the new introduced operator Cλp,n(a, c)f(z), for certain multivalent functions in the open unit disc, we establish differential Sandwich Theorem. Отримано деякi субординацiї i результати для суперординацiй iз використанням нового оператора. З допомогою вве- деного оператора Cλp,n(a, c)f(z) доведено диференцiальну сендвiч-теорему для багатозначних функцiй у вiдкритому одиничному крузi. 1. Introduction. Let Σp denote the class of functions f(z) of the form f(z) = zp + ∞∑ k=n ap+kz p+k, p ∈ N = {1, 2, 3, ...}, (1) which are analytic in the open unit disk U = {z : z ∈ C, |z| < 1}. For functions f ∈ Σp given by (1) and g ∈ Σp given by g(z) = zp + ∞∑ k=n bp+kz p+k. We define the Hadamard product (or convolution) of f and g by (f ∗ g)(z) = zp + ∞∑ k=n ap+kbp+kz p+k. (2) Let f(z) and g(z) be analytic in U. We say that the function g(z) is subordinate to f(z), if there exists a function w(z) analytic in U, with w(0) = 0 and |w(z)| < 1, and such that g(z) = f(w(z)). In such a case, we write g(z) ≺ f(z). If the function f is univalent in U, then g(z) ≺ f(z) if and only if g(0) = f(0) and g(U) ⊂ f(U). Let H(U) denote the class of analytic functions in U and let H(a, n) denote the subclass of functions f ∈ H(U) of the form: f(z) = a+ anz n + an+1z n+1 + . . . . Denote by Q, the set of all functions f(z) that are analytic and injective on U\E(f), where E(f) = {ξ ∈ ∂U : limz→ξ f(z) =∞}, and such that f ′(ξ) 6= 0 for ξ ∈ ∂U\E(f). Let ψ : C3×U→ C, let h(z) be univalent in U and q(z) ∈ Q. Miller and Mocanu [1] considered the problem of determining conditions on admissible function ψ such that * This work was supported by Nature Science Foundation of Yunnan (2013FZ116), Scientific Research Foundation from Yunnan Province Education Committee (2010Y167 and 2011C120), Foundation of Honghe University (ZDKC 1111), and National Science Foundation of China (11301160). c© P. HE, D. ZHANG, 2013 1580 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 SOME PROPERTIES OF MULTIVALENT FUNCTIONS ASSOCIATED A CERTAIN OPERATOR 1581 ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) (3) implies p(z) ≺ q(z), for all functions p(z) ∈ H(a, n) that satisfy the differential subordination (3). Moreover, they found conditions so that q(z) is the smallest function with this property, called the best dominant of the subordination (3). Let ϕ : C3×U→ C, let h(z) ∈ H and q(z) ∈ H(a, n). Recently Miller and Mocanu [2] studied the dual problem and determined conditions on ϕ such that h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) (4) implies q(z) ≺ p(z), for all functions p(z) ∈ Q that satisfy the above superordination. They also found conditions so that the function q(z) is the largest function with this property, called the best subordinant of the superordination (4). In [3], N. E. Cho, O. S. Kwon and H. M. Srivastava extended the multiplier transformation and defined the operator Iλp,n(a, c)f(z) by the following infinite series: Iλp,n(a, c)f(z) = zp + ∞∑ k=n (λ+ p)k(c)k k!(a)k ak+pz k+p. (5) In recent years, Aghalary [4], Patel [5], Patel et al. [6], Sokl and Trojnar-Spelina [7], Zeng et al. [8] and Wang et al. [9] obtained many interesting results associated with the Cho – Kwon – Srivastava operator. We now introduce the following family of linear operators: Lλp,n(a, c)f(z) = zp + ∞∑ k=n k!(a)k (λ+ p)k(c)k ak+pz k+p. (6) It is readily verified from the definition (6) that z(Lλp,n(a, c+ 1)f(z))′ = cLλp,n(a, c)f(z)− (c− p)Lλp,n(a, c+ 1)f(z) (7) and z(Lλp,n(a, c)f(z))′ = (c− 1)Lλp,n(a, c− 1)f(z)− (c− 1− p)Lλp,n(a, c)f(z). (8) We also note that L1 p,n(p + 1, 1)f(z) = f(z) and L0 p,n(p, 1)f(z) = f(z). In this paper, we will derive several subordination results, superordination results and sandwich results involving the operator Lλp,n(a, c)f(z) and some of its special operators. 2. Some lemmas. In order to prove our main results, we need the following lemmas. Lemma 1 [10]. Let q(z) be univalent in U, γ ∈ C∗ = C\{0} and suppose that Re { 1 + zq′′(z) q′(z) } > max { 0,−Re 1 γ } . If p(z) is analytic in U and p(z) + γzp′(z) ≺ q(z) + γzq′(z), then p(z) ≺ q(z), and q(z) is the best dominant. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 1582 P. HE, D. ZHANG Lemma 2 [10]. Let q(z) be convex in U, q(0) = a and γ ∈ C, Re γ > 0. If p ∈ H(a, 1) and p(z) + γzp′(z) is univalent in U, then q(z) + γzq′(z) ≺ p(z) + γzp′(z), where q(z) ≺ p(z) and q(z) is the best subordinant. 3. Main results. We shall assume in the reminder of this paper that p, n ∈ N and z ∈ U. Theorem 1. Let q(z) be univalent in U with q(0) = 1, α ∈ C∗, and suppose that Re { 1 + zq′′(z) q′(z) } > max { 0,−Re 1 α } . (9) If f(z) ∈ Σp satisfies the subordination R(α, n, p, λ, a, c) ≺ q(z) + αzq′(z), (10) where R(α, n, p, λ, a, c) is given by R(α, n, p, λ, a, c) = = (1− α) Lλp,n(a, c+ 1) f(z) Lλp,n(a, c) f(z) + α { c− (c− 1) Lλp,n(a, c+ 1)f(z) Lλp,n(a, c− 1) f(z) (Lλp,n(a, c) f(z))2 } , (11) then Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ≺ q(z) and q(z) is the best dominant. Proof. Let p(z) = Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) , (12) differentiating (12) with respect to z and using the identity (7) and (8) in the resulting equation, we have zp′(z) = c− (c− 1) Lλp,n(a, c+ 1)f(z) · Lλp,n(a, c− 1)f(z) (Lλp,n(a, c)f(z))2 − Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) . Therefore, we have R(α, n, p, λ, a, c) = p(z) + αzp′(z). By (10), we obtain p(z) + αzp′(z) ≺ q(z) + αzq′(z). By Lemma 1, Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ≺ q(z), and the proof of Theorem 1 is completed. Taking the convex function q(z) = 1 +Az 1 +Bz in Theorem 1, we have the following corollary. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 SOME PROPERTIES OF MULTIVALENT FUNCTIONS ASSOCIATED A CERTAIN OPERATOR 1583 Corollary 1. Let A, B, α ∈ C, A 6= B, |B| < 1, Reα > 0. If f(z) ∈ Σp satisfies the subordination R(α, n, p, λ, a, c) ≺ 1 +Az 1 +Bz + α (A−B)z (1 +Bz)2 , where R(α, n, p, λ, a, c) is given by (11), then Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ≺ 1 +Az 1 +Bz , and the function 1 +Az 1 +Bz is the best dominant. Theorem 2. Let q(z) be convex in U, q(0) = 1 and α ∈ C, Reα > 0. If f(z) ∈ Σp such that Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ∈ H(q(0), 1) ⋂ Q, and R(α, n, p, λ, a, c) is univalent in U and satisfies the superordination q(z) + αzq′(z) ≺ R(α, n, p, λ, a, c), (13) where R(α, n, p, λ, a, c) is given by (11), then q(z) ≺ Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) , and q(z) is the best subordinant. Proof. Let p(z) be given by (12) and proceeding as in the proof of Theorem 1, the subordination (13) becomes q(z) + αzq′(z) ≺ p(z) + αzp′(z). The proof follows by an application of Lemma 2. Corollary 2. Let A, B, α ∈ C, A 6= B, |B| < 1, Reα > 0. If f(z) ∈ Σp such that Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ∈ H(q(0), 1) ⋂ Q, and R(α, n, p, λ, a, c) is univalent in U and satisfies the superordination 1 +Az 1 +Bz + α (A−B)z (1 +Bz)2 ≺ R(α, n, p, λ, a, c), then 1 +Az 1 +Bz ≺ Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) , and the function 1 +Az 1 +Bz is the best subordinant. Combining Theorems 1 and 2, we have the following sandwich theorem. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 1584 P. HE, D. ZHANG Theorem 3. Let q1(z) and q2(z) be convex in U, q1(0) = q2(0) = 1 and q2(z) satisfies (9), and α ∈ C, Reα > 0. If f(z) ∈ Σp such that Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ∈ H(q(0), 1) ⋂ Q, and R(α, n, p, λ, a, c) is univalent in U and satisfies q1(z) + αzq′1(z) ≺ R(α, n, p, λ, a, c) ≺ q2(z) + αzq′2(z), where R(α, n, p, λ, a, c) is given by (11), then q1(z) ≺ Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) ≺ q2(z) and q1(z), q2(z) are the best subordinant and the best dominant, respectively. Remark. Combining Corollaries 1, 2, we obtain the corresponding sandwich results for the operators Lλp,n(a, c+ 1)f(z) Lλp,n(a, c)f(z) . 1. Miller S. S., Mocanu P. T. Differential subordination: theory and applications // Ser. Monogr. and Textbooks in Pure and Appl. Math. – New York; Basel: Marcel Dekker Inc., 2000. – 225. 2. Miller S. S., Mocanu P. T. Subordinates of differential superordinations // Complex Var. – 2003. – 48, № 10. – P. 815 – 826. 3. Cho N. E., Kwon O. S., Srivastava H. M. Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators // J. Math. Anal. and Appl. – 2004. – 292. – P. 470 – 483. 4. Aghalary R. On subclasses of p-valent analytic functions defined by integral operators // Kyungpook Math. J. – 2007. – 47. – P. 393 – 401. 5. Patel J. On certain subclasses of multivalent functions involving Cho – Kwonv – Srivastava operator // Ann. Univ. Mariae Curie-Skaodowska Sect. A. – 2006. – 60. – P. 75 – 86. 6. Patel J., Cho N. E., Srivastava H. M. Certain subclasses of multivalent functions associated with a family of linear operators // Math. Comput. Modelling. – 2006. – 43. – P. 320 – 338. 7. Sokl J., Trojnar-Spelina L. Convolution properties for certain classes of multivalent functions // J. Math. Anal. and Appl. – 2008. – 337. – P. 1190 – 1197. 8. Zeng T., Gao C.-Y., Wang Z.-G., Aghalary R. Certain subclass of multivalent functions involving the Cho – Kwon – Srivastava operator // J. Math. Appl. – 2008. – 30. – P. 161 – 170. 9. Wang Z. G., Aghalaryc R., Darus M., Ibrahim R. W. Some properties of certain multivalent analytic functions involving the Cho – Kwon – Srivastava operator // Math. and Comput. Modelling. – 2009. – 49. – P. 1969 – 1984. 10. Shanmugam T. N., Ravichandran V., Sivasubramanian S. Differential sandwich theorems for some subclasses of analytic functions // J. Austr. Math. Anal. and Appl. – 2006. – 3, № 1. – P. 1 – 11. Received 04.02.12 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11