Про стійкість руху за Лагранжем у задачі трьох тіл
У задачі трьох тіл розглядається зв'язок між стійкістю за Хіллом фіксованої пари матеріальних точок і стійкістю за Лагранжем системи всіх трьох матеріальних точок. Доводиться відповідна теорема, що встановлює достатні умови стійкості за Лагранжем. Розглядається наслідок отриманої теореми стосов...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2005
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165824 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про стійкість руху за Лагранжем у задачі трьох тіл / С.П. Сосницький // Український математичний журнал. — 2005. — Т. 57, № 8. — С. 1137 – 1143. — Бібліогр.: 8 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | У задачі трьох тіл розглядається зв'язок між стійкістю за Хіллом фіксованої пари матеріальних точок і стійкістю за Лагранжем системи всіх трьох матеріальних точок. Доводиться відповідна теорема, що встановлює достатні умови стійкості за Лагранжем. Розглядається наслідок отриманої теореми стосовно обмеженої задачі трьох тіл. Встановлюються співвідношення, які зв'язують нарізно квадрати взаємних відстаней між матеріальними точками і квадрати відстаней матеріальних точок до барицентра системи. Ці співвідношення можуть виявитися корисними як в необмеженій, так і в обмеженій задачах трьох тіл. |
---|