Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits

Dedicated to V. S. Korolyuk on occasion of his 80-th birthday Properties of the set Tₛ of "particularly nonnormal numbers" of the unit interval are studied in details (Tₛ consists of real numbers x, some of whose s-adic digits have the asymptotic frequencies in the nonterminating s-adic e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Pratsiovytyi, M.V., Torbin, H.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165826
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits / M.V. Pratsiovytyi, H.M. Torbin // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1163–1170. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165826
record_format dspace
spelling irk-123456789-1658262020-02-17T01:27:47Z Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits Pratsiovytyi, M.V. Torbin, H.M. Статті Dedicated to V. S. Korolyuk on occasion of his 80-th birthday Properties of the set Tₛ of "particularly nonnormal numbers" of the unit interval are studied in details (Tₛ consists of real numbers x, some of whose s-adic digits have the asymptotic frequencies in the nonterminating s-adic expansion of x, and some do not). It is proven that the set Tₛ is residual in the topological sense (i.e., it is of the first Baire category) and it is generic in the sense of fractal geometry ( Tₛ is a superfractal set, i.e., its Hausdorff - Besicovitch dimension is equal to 1). A topological and fractal classification of sets of real numbers via analysis of asymptotic frequencies of digits in their s-adic expansions is presented. Детально вивчаються властивості множини Tₛ „особливо ненормальних чисел" одиничного інтервалу (тобто множини чисел x, для яких немає асимптотичної частоти деяких цифр в s-адичному зображенні, а деякі цифри мають асимптотичні частоти). Доведено, що множина Tₛ є нехтуваною в топологічному сенсі (першої категорії Бера) та загальною в сенсі фрактальної геометрії (Tₛ є суперфрактальною множиною, розмірність Хаусдорфа-Безиковича якої дорівнює одиниці). Наведено топологічну і фрактальну класифікацію множин дійсних чисел через аналіз асимптотичної частоти їх s-адичних зображень. 2005 Article Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits / M.V. Pratsiovytyi, H.M. Torbin // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1163–1170. — Бібліогр.: 8 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165826 519.21 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Pratsiovytyi, M.V.
Torbin, H.M.
Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
Український математичний журнал
description Dedicated to V. S. Korolyuk on occasion of his 80-th birthday Properties of the set Tₛ of "particularly nonnormal numbers" of the unit interval are studied in details (Tₛ consists of real numbers x, some of whose s-adic digits have the asymptotic frequencies in the nonterminating s-adic expansion of x, and some do not). It is proven that the set Tₛ is residual in the topological sense (i.e., it is of the first Baire category) and it is generic in the sense of fractal geometry ( Tₛ is a superfractal set, i.e., its Hausdorff - Besicovitch dimension is equal to 1). A topological and fractal classification of sets of real numbers via analysis of asymptotic frequencies of digits in their s-adic expansions is presented.
format Article
author Pratsiovytyi, M.V.
Torbin, H.M.
author_facet Pratsiovytyi, M.V.
Torbin, H.M.
author_sort Pratsiovytyi, M.V.
title Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
title_short Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
title_full Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
title_fullStr Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
title_full_unstemmed Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
title_sort singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their s-adic digits
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165826
citation_txt Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits / M.V. Pratsiovytyi, H.M. Torbin // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1163–1170. — Бібліогр.: 8 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT pratsiovytyimv singularprobabilitydistributionsandfractalpropertiesofsetsofrealnumbersdefinedbytheasymptoticfrequenciesoftheirsadicdigits
AT torbinhm singularprobabilitydistributionsandfractalpropertiesofsetsofrealnumbersdefinedbytheasymptoticfrequenciesoftheirsadicdigits
first_indexed 2023-10-18T22:17:04Z
last_indexed 2023-10-18T22:17:04Z
_version_ 1796155113269624832