Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. II

Розглянуто неперервні функції на двовимірних поверхнях, які відповідають наступним умовам: множина їх локальних єкстрємумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число nЄN такі, що функція в цьому околі топологічно спряжена до Re zn в околі нуля. Нехай для кожної f:M...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Полулях, Е.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2015
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165872
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. II / Е.А. Полулях // Український математичний журнал. — 2015. — Т. 67, № 10. — С. 1398–1408. — Бібліогр.: 6 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглянуто неперервні функції на двовимірних поверхнях, які відповідають наступним умовам: множина їх локальних єкстрємумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число nЄN такі, що функція в цьому околі топологічно спряжена до Re zn в околі нуля. Нехай для кожної f:M²→R є фактор-простором M² по розбиттю, що утворене компонентами множин рівня функції f. Відомо, що для компактного M2 простір ΓK−R(f) є топологічним графом. У першій частині статті визначено поняття графа з черенками, яке є узагальненням топологічного графа. Для некомпактного M² наведено три умови, при виконанні яких простір ΓK−R(f) є графом з черенками. У другій частині доведено, що у випадку M²=R² ці умови є також необхідними. У загальному випадку одна з умов не є необхідною. Наведено відповідний приклад.