Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах
Виявлено дестабілізуючий (у розумінні зменшення запасу асимптотичної стійкості в середньому квадратичному) ефект параметричних випадкових збурень типу білого шуму в квазілінійних (автоматичного регулювання Лур'є - Постнікова з нелінійним зворотним зв'язком) неперервних і дискретних динаміч...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2005
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165893 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах / Д.Г. Коренівський // Український математичний журнал. — 2005. — Т. 57, № 12. — С. 1719–1724. — Бібліогр.: 3 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-165893 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1658932020-02-18T01:27:31Z Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах Коренівський, Д.Г. Короткі повідомлення Виявлено дестабілізуючий (у розумінні зменшення запасу асимптотичної стійкості в середньому квадратичному) ефект параметричних випадкових збурень типу білого шуму в квазілінійних (автоматичного регулювання Лур'є - Постнікова з нелінійним зворотним зв'язком) неперервних і дискретних динамічних системах. При цьому використано стохастичні функції Ляпунова у вигляді лінійних комбінацій „квадратична форма фазових координат плюс інтеграл від неліній-ності" (неперервні системи) і „квадратична форма фазових координат плюс інтегральна сума для нелінійності" (дискретні системи) та матричні алгебраїчні рівняння Сільвестра, що супроводжують стохастичні функції Ляпунова такого вигляду. We describe the destabilizing (in the sense of a decrease in the reserve of mean-square asymptotic stability) effect of random parametric perturbations of the white-noise type in quasilinear continuous and discrete dynamical systems (Lur’e-Postnikov systems of automatic control with nonlinear feedback). We use stochastic Lyapunov functions in the form of linear combinations of the types “a quadratic form of phase coordinates plus the integral of a nonlinearity” (continuous systems) and “a quadratic form of phase coordinates plus the integral sum for a nonlinearity” (discrete systems) and the matrix algebraic Sylvester equations associated with stochastic Lyapunov functions of this form. 2005 Article Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах / Д.Г. Коренівський // Український математичний журнал. — 2005. — Т. 57, № 12. — С. 1719–1724. — Бібліогр.: 3 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165893 519.21 uk Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
topic |
Короткі повідомлення Короткі повідомлення |
spellingShingle |
Короткі повідомлення Короткі повідомлення Коренівський, Д.Г. Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах Український математичний журнал |
description |
Виявлено дестабілізуючий (у розумінні зменшення запасу асимптотичної стійкості в середньому квадратичному) ефект параметричних випадкових збурень типу білого шуму в квазілінійних (автоматичного регулювання Лур'є - Постнікова з нелінійним зворотним зв'язком) неперервних і дискретних динамічних системах. При цьому використано стохастичні функції Ляпунова у вигляді лінійних комбінацій „квадратична форма фазових координат плюс інтеграл від неліній-ності" (неперервні системи) і „квадратична форма фазових координат плюс інтегральна сума для нелінійності" (дискретні системи) та матричні алгебраїчні рівняння Сільвестра, що супроводжують стохастичні функції Ляпунова такого вигляду. |
format |
Article |
author |
Коренівський, Д.Г. |
author_facet |
Коренівський, Д.Г. |
author_sort |
Коренівський, Д.Г. |
title |
Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах |
title_short |
Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах |
title_full |
Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах |
title_fullStr |
Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах |
title_full_unstemmed |
Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах |
title_sort |
дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах |
publisher |
Інститут математики НАН України |
publishDate |
2005 |
topic_facet |
Короткі повідомлення |
url |
http://dspace.nbuv.gov.ua/handle/123456789/165893 |
citation_txt |
Дестабілізуючий ефект параметричних випадкових збурень типу білого шуму в деяких квазілінійних неперервних та дискретних динамічних системах / Д.Г. Коренівський // Український математичний журнал. — 2005. — Т. 57, № 12. — С. 1719–1724. — Бібліогр.: 3 назв. — укр. |
series |
Український математичний журнал |
work_keys_str_mv |
AT korenívsʹkijdg destabílízuûčijefektparametričnihvipadkovihzburenʹtipubílogošumuvdeâkihkvazílíníjnihneperervnihtadiskretnihdinamíčnihsistemah |
first_indexed |
2023-10-18T22:17:14Z |
last_indexed |
2023-10-18T22:17:14Z |
_version_ |
1796155121115070464 |