New second branch of the spectrum of the BCS Hamiltonian and a “pseudogap”

The BCS Hamiltonian of superconductivity has the second branch of eigenvalues and eigenvectors. It consists of wave functions of pairs of electrons in ground and excited states. The continuous spectrum of excited pairs is separated by a nonzero gap from the point of the discrete spectrum that corres...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Petrina, D.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165899
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:New second branch of the spectrum of the BCS Hamiltonian and a “pseudogap” / D.Ya. Petrina // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1508–1533. — Бібліогр.: 17 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The BCS Hamiltonian of superconductivity has the second branch of eigenvalues and eigenvectors. It consists of wave functions of pairs of electrons in ground and excited states. The continuous spectrum of excited pairs is separated by a nonzero gap from the point of the discrete spectrum that corresponds to the pair in the ground state. The corresponding grand partition function and free energy are exactly calculated. This implies that, for low temperatures, the system is in the condensate of pairs in the ground state. The sequence of correlation functions is exactly calculated in the thermodynamic limit, and it coincides with the corresponding sequence of the system with approximating Hamiltonian. The gap in the spectrum of excitations depends continuously on temperature and is different from zero above the critical temperature corresponding to the first branch of the spectrum. In our opinion, this fact explains the phenomenon of “pseudogap.”