Determination of jumps in terms of linear operators
A theorem of Luk´acs [4] states that the partial sums of conjugate Fourier series of a periodic Lebesgue integrable function f diverge with a logarithmic rate at the points of discontinuity of f of the first kind. M´oricz [5] proved a similar theorem for the rectangular partial sums of double variab...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/165922 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Determination of jumps in terms of linear operators / Sh. Zviadadze // Український математичний журнал. — 2015. — Т. 67, № 12. — С. 1649–1657. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A theorem of Luk´acs [4] states that the partial sums of conjugate Fourier series of a periodic Lebesgue integrable function f diverge with a logarithmic rate at the points of discontinuity of f of the first kind. M´oricz [5] proved a similar theorem for the rectangular partial sums of double variable functions.
We consider analogs of the M´oricz theorem for generalized Ces´aro means and for positive linear means.
We consider a similar theorem in terms of linear operators satisfying certain conditions. |
---|