Про квазінеперервну апроксимацію в класичній статистичній механіці
В рамках классической статистической механики рассматриваются непрерывные бесконечные системы точечных частиц, взаимодействующих с помощью усиленно сверхустойчивого взаимодействия. Семейство аппроксимируемых корреляционных функций определяется таким образом, что они учитывают только те конфигурации...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166008 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про квазінеперервну апроксимацію в класичній статистичній механіці / С.М. Петренко, О.Л. Ребенко, М.В. Тертичний // Український математичний журнал. — 2011. — Т. 63, № 3. — С. 369–384. — Бібліогр.: 14 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В рамках классической статистической механики рассматриваются непрерывные бесконечные системы точечных частиц, взаимодействующих с помощью усиленно сверхустойчивого взаимодействия. Семейство аппроксимируемых корреляционных функций определяется таким образом, что они учитывают только те конфигурации частиц в пространстве Rᵈ, которые для заданного розбиения пространства Rᵈ на непересекающиеся гиперкубики объема aᵈ содержат не более чем одну частицу в каждом кубике. Доказано, что так определенные аппроксимации корреляционных функций сходятся поточечно к собственно корреляционным функциям системы, когда параметр аппроксимации a стремится к 0, при произвольных положительных значениях обратной температуры β и активности z. Этот результат получен как для двухчастичных, так и многочастичных потенциалов взаимодействия. |
---|