2025-02-23T11:23:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-166025%22&qt=morelikethis&rows=5
2025-02-23T11:23:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-166025%22&qt=morelikethis&rows=5
2025-02-23T11:23:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:23:37-05:00 DEBUG: Deserialized SOLR response
On some imbedding relations between certain sequence spaces
In the present paper, we introduce the sequence space ` lλp of non-absolute type which is a p-normed space and a BK-space in the cases of 0 < p < 1 and 1 ≤ p < ∞, respectively. Further, we derive some imbedding relations and construct the basis for the space lλp, where 1 ≤ p < ∞....
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2011
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166025 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-166025 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1660252020-02-19T01:26:06Z On some imbedding relations between certain sequence spaces Mursaleen, M. Noman, A.K. Статті In the present paper, we introduce the sequence space ` lλp of non-absolute type which is a p-normed space and a BK-space in the cases of 0 < p < 1 and 1 ≤ p < ∞, respectively. Further, we derive some imbedding relations and construct the basis for the space lλp, where 1 ≤ p < ∞. Remove selected Введено поняття простору послiдовностей lλp неабсолютного типу, який є p-нормованим простором i BK-простором у випадках 0 < p < 1 i 1 ≤ p < ∞ вiдповiдно. Крiм того, отримано деякi спiввiдношення вкладення та побудовано базис для простору lλp, де 1 ≤ p < ∞. 2011 Article On some imbedding relations between certain sequence spaces / M. Mursaleen, A.K. Noman // Український математичний журнал. — 2011. — Т. 63, № 4. — С. 489–501. — Бібліогр.: 19 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166025 517.9 en Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Статті Статті |
spellingShingle |
Статті Статті Mursaleen, M. Noman, A.K. On some imbedding relations between certain sequence spaces Український математичний журнал |
description |
In the present paper, we introduce the sequence space `
lλp of non-absolute type which is a p-normed space and
a BK-space in the cases of 0 < p < 1 and 1 ≤ p < ∞, respectively. Further, we derive some imbedding
relations and construct the basis for the space lλp, where 1 ≤ p < ∞.
Remove selected |
format |
Article |
author |
Mursaleen, M. Noman, A.K. |
author_facet |
Mursaleen, M. Noman, A.K. |
author_sort |
Mursaleen, M. |
title |
On some imbedding relations between certain sequence spaces |
title_short |
On some imbedding relations between certain sequence spaces |
title_full |
On some imbedding relations between certain sequence spaces |
title_fullStr |
On some imbedding relations between certain sequence spaces |
title_full_unstemmed |
On some imbedding relations between certain sequence spaces |
title_sort |
on some imbedding relations between certain sequence spaces |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/166025 |
citation_txt |
On some imbedding relations between certain sequence spaces / M. Mursaleen, A.K. Noman // Український математичний журнал. — 2011. — Т. 63, № 4. — С. 489–501. — Бібліогр.: 19 назв. — англ. |
series |
Український математичний журнал |
work_keys_str_mv |
AT mursaleenm onsomeimbeddingrelationsbetweencertainsequencespaces AT nomanak onsomeimbeddingrelationsbetweencertainsequencespaces |
first_indexed |
2023-10-18T22:17:42Z |
last_indexed |
2023-10-18T22:17:42Z |
_version_ |
1796155141557059584 |