On strongly ⊕-supplemented modules
In this work, strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are defined and some properties of strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are investigated. Let R be a ring. Then every R-module is strongly ⊕-supplemented if and only if R is perfect...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166041 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On strongly ⊕-supplemented modules / C. Nebiyev, A. Pancar // Український математичний журнал. — 2011. — Т. 63, № 5. — С. 662–667. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this work, strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are defined and some properties of strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are investigated. Let R be a ring. Then every R-module is strongly ⊕-supplemented if and only if R is perfect. Finite direct sum of ⊕-supplemented modules is ⊕-supplemented. But this is not true for strongly ⊕-supplemented modules. Any direct sum of cofinitely ⊕-supplemented modules is cofinitely ⊕-supplemented but this is not true for strongly cofinitely ⊕-supplemented modules. We also prove that a supplemented module is strongly ⊕-supplemented if and only if every supplement submodule lies above a direct summand. |
---|