On strongly ⊕-supplemented modules

In this work, strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are defined and some properties of strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are investigated. Let R be a ring. Then every R-module is strongly ⊕-supplemented if and only if R is perfect...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Nebiyev, C., Pancar, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166041
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On strongly ⊕-supplemented modules / C. Nebiyev, A. Pancar // Український математичний журнал. — 2011. — Т. 63, № 5. — С. 662–667. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this work, strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are defined and some properties of strongly ⊕-supplemented and strongly cofinitely ⊕-supplemented modules are investigated. Let R be a ring. Then every R-module is strongly ⊕-supplemented if and only if R is perfect. Finite direct sum of ⊕-supplemented modules is ⊕-supplemented. But this is not true for strongly ⊕-supplemented modules. Any direct sum of cofinitely ⊕-supplemented modules is cofinitely ⊕-supplemented but this is not true for strongly cofinitely ⊕-supplemented modules. We also prove that a supplemented module is strongly ⊕-supplemented if and only if every supplement submodule lies above a direct summand.