Finite-dimensional subalgebras in polynomial Lie algebras of rank one

Let Wn(K) be the Lie algebra of derivations of the polynomial algebra K[X] := K[x1, . . . , xn] over an algebraically closed field K of characteristic zero. A subalgebra L ⊆ Wn(K) is called polynomial if it is a submodule of the K[X]-module Wn(K). We prove that the centralizer of every nonzero ele...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Arzhantsev, I.V., Makedonskii, E.A., Petravchuk, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166045
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Finite-dimensional subalgebras in polynomial Lie algebras of rank one / I.V. Arzhantsev, E.A. Makedonskii, A.P. Petravchuk // Український математичний журнал. — 2011. — Т. 63, № 5. — С. 708–712. — Бібліогр.: 6 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let Wn(K) be the Lie algebra of derivations of the polynomial algebra K[X] := K[x1, . . . , xn] over an algebraically closed field K of characteristic zero. A subalgebra L ⊆ Wn(K) is called polynomial if it is a submodule of the K[X]-module Wn(K). We prove that the centralizer of every nonzero element in L is abelian provided that L is of rank one. This fact allows to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.