Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point

The Dirichlet problem for the heat equation in a bounded domain G⊂Rn+1 is characteristic because there are boundary points at which the boundary touches a characteristic hyperplane t=c, where c is a constant. For the first time, necessary and sufficient conditions on the boundary guaranteeing that t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Antoniouk, A.V., Kiselev, O.M., Tarkhanov, N.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166114
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point / A.V. Antoniouk, O.M. Kiselev, N.N. Tarkhanov // Український математичний журнал. — 2014. — Т. 66, № 10. — С. 1299–1317. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Dirichlet problem for the heat equation in a bounded domain G⊂Rn+1 is characteristic because there are boundary points at which the boundary touches a characteristic hyperplane t=c, where c is a constant. For the first time, necessary and sufficient conditions on the boundary guaranteeing that the solution is continuous up to the characteristic point were established by Petrovskii (1934) under the assumption that the Dirichlet data are continuous. The appearance of Petrovskii’s paper was stimulated by the existing interest to the investigation of general boundary-value problems for parabolic equations in bounded domains. We contribute to the study of this problem by finding a formal solution of the Dirichlet problem for the heat equation in a neighborhood of a cuspidal characteristic boundary point and analyzing its asymptotic behavior.