A generalization of lifting modules
We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/▽ is regular and ▽=JacS, where S is the ring of all R-endomorphisms...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166121 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A generalization of lifting modules / T.A. Kalati // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1477–1484. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-166121 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1661212020-02-19T01:28:49Z A generalization of lifting modules Kalati, T.A. Статті We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/▽ is regular and ▽=JacS, where S is the ring of all R-endomorphisms of M and ▽={ϕ∈S|Imϕ≪M}. Moreover, we prove that if M is a projective I -lifting module, then M is a direct sum of cyclic modules. The connections between I -lifting modules and dual Rickart modules are presented. Введено поняття I-підйомних модулів як природне узагальнення підйомних модулів. Наведено дєякі властивості цього класу модулів. Показано, що якщо M — прямий проективний модуль I-підйому, то S/▽ є регулярною i ▽=JacS, де S — кільце всіх R-ендоморфізмів M, а ▽={ϕ∈S|Imϕ≪M}. Більш того, доведено, що якщо M — проективний I-підйомний модуль, то M є прямою сумою циклічних модулів. Встановлено зв'язки між I-підйомними модулями та дуальними модулями Рікарта. 2014 Article A generalization of lifting modules / T.A. Kalati // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1477–1484. — Бібліогр.: 19 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166121 512.5 en Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Статті Статті |
spellingShingle |
Статті Статті Kalati, T.A. A generalization of lifting modules Український математичний журнал |
description |
We introduce the notion of I -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if M is an I -lifting direct projective module, then S/▽ is regular and ▽=JacS, where S is the ring of all R-endomorphisms of M and ▽={ϕ∈S|Imϕ≪M}. Moreover, we prove that if M is a projective I -lifting module, then M is a direct sum of cyclic modules. The connections between I -lifting modules and dual Rickart modules are presented. |
format |
Article |
author |
Kalati, T.A. |
author_facet |
Kalati, T.A. |
author_sort |
Kalati, T.A. |
title |
A generalization of lifting modules |
title_short |
A generalization of lifting modules |
title_full |
A generalization of lifting modules |
title_fullStr |
A generalization of lifting modules |
title_full_unstemmed |
A generalization of lifting modules |
title_sort |
generalization of lifting modules |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/166121 |
citation_txt |
A generalization of lifting modules / T.A. Kalati // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1477–1484. — Бібліогр.: 19 назв. — англ. |
series |
Український математичний журнал |
work_keys_str_mv |
AT kalatita ageneralizationofliftingmodules AT kalatita generalizationofliftingmodules |
first_indexed |
2023-10-18T22:17:51Z |
last_indexed |
2023-10-18T22:17:51Z |
_version_ |
1796155148331909120 |