On rings with weakly prime centers
We introduce a class of rings obtained as a generalization of rings with prime centers. A ring R is called weakly prime center (or simply WPC) if ab∈Z(R) (R) implies that aRb is an ideal of R where Z(R) stands for the center of R. The structure and properties of these rings are studied and the relat...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166126 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On rings with weakly prime centers / Junchao Wei // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1615–1622. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-166126 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1661262020-02-20T01:27:11Z On rings with weakly prime centers Junchao Wei Статті We introduce a class of rings obtained as a generalization of rings with prime centers. A ring R is called weakly prime center (or simply WPC) if ab∈Z(R) (R) implies that aRb is an ideal of R where Z(R) stands for the center of R. The structure and properties of these rings are studied and the relationships between prime center rings, strongly regular rings, and WPC rings are discussed, parallel with the relationship between the WPC and commutativity. Введено клас кілєць, що є узагальненням кілєць з простими центрами. Кільце R називається слабко простим центром (чи просто WPC), якщо з включення ab∈Z(R) випливає, що aRb є ідеалом R, де Z(R) — центр R. Вивчено структуру i властивості таких кілець та проаналізовано співвідношення між простими центральними кільцями, сильно регулярними кільцями та кільцями з слабко простим центром паралельно зі співвідношенням між слабко простим центром та комутативністю. 2014 Article On rings with weakly prime centers / Junchao Wei // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1615–1622. — Бібліогр.: 19 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166126 512.5 en Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Статті Статті |
spellingShingle |
Статті Статті Junchao Wei On rings with weakly prime centers Український математичний журнал |
description |
We introduce a class of rings obtained as a generalization of rings with prime centers. A ring R is called weakly prime center (or simply WPC) if ab∈Z(R) (R) implies that aRb is an ideal of R where Z(R) stands for the center of R. The structure and properties of these rings are studied and the relationships between prime center rings, strongly regular rings, and WPC rings are discussed, parallel with the relationship between the WPC and commutativity. |
format |
Article |
author |
Junchao Wei |
author_facet |
Junchao Wei |
author_sort |
Junchao Wei |
title |
On rings with weakly prime centers |
title_short |
On rings with weakly prime centers |
title_full |
On rings with weakly prime centers |
title_fullStr |
On rings with weakly prime centers |
title_full_unstemmed |
On rings with weakly prime centers |
title_sort |
on rings with weakly prime centers |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/166126 |
citation_txt |
On rings with weakly prime centers / Junchao Wei // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1615–1622. — Бібліогр.: 19 назв. — англ. |
series |
Український математичний журнал |
work_keys_str_mv |
AT junchaowei onringswithweaklyprimecenters |
first_indexed |
2023-10-18T22:17:52Z |
last_indexed |
2023-10-18T22:17:52Z |
_version_ |
1796155148863537152 |