Kernel of a map of a shift along the orbits of continuous flows
Let F:M × R → M be a continuous flow on a topological manifold M. For every subset V⊂M, we denote by P(V) the set of all continuous functions ξ:V→R such that F(x,ξ(x))=x for all x∈V. These functions vanish at nonperiodic points of the flow, while their values at periodic points are integer multiples...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166151 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Kernel of a map of a shift along the orbits of continuous flows / S.I. Maksymenko // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 651–659. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let F:M × R → M be a continuous flow on a topological manifold M. For every subset V⊂M, we denote by P(V) the set of all continuous functions ξ:V→R such that F(x,ξ(x))=x for all x∈V. These functions vanish at nonperiodic points of the flow, while their values at periodic points are integer multiples of the corresponding periods (in general, not minimal). In this paper, the structure of P(V) is described for an arbitrary connected open subset V⊂M. |
---|