On impulsive Sturm–Liouville operators with Coulomb potential and spectral parameter linearly contained in boundary conditions
The Sturm–Liouville problem with linear discontinuities is investigated in the case where an eigenparameter appears not only in a differential equation but also in boundary conditions. Properties and the asymptotic behavior of spectral characteristics are studied for the Sturm–Liouville operators wi...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166283 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On impulsive Sturm–Liouville operators with Coulomb potential and spectral parameter linearly contained in boundary conditions / R.Kh. Amirov, N. Topsakal, Y. Guldu // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1155–1172. — Бібліогр.: 42 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The Sturm–Liouville problem with linear discontinuities is investigated in the case where an eigenparameter appears not only in a differential equation but also in boundary conditions. Properties and the asymptotic behavior of spectral characteristics are studied for the Sturm–Liouville operators with Coulomb potential that have discontinuity conditions inside a finite interval. Moreover, the Weyl function for this problem is defined and uniqueness theorems are proved for a solution of the inverse problem with respect to this function. |
---|