On impulsive Sturm–Liouville operators with Coulomb potential and spectral parameter linearly contained in boundary conditions

The Sturm–Liouville problem with linear discontinuities is investigated in the case where an eigenparameter appears not only in a differential equation but also in boundary conditions. Properties and the asymptotic behavior of spectral characteristics are studied for the Sturm–Liouville operators wi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Amirov, R. Kh., Topsakal, N., Guldu, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166283
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On impulsive Sturm–Liouville operators with Coulomb potential and spectral parameter linearly contained in boundary conditions / R.Kh. Amirov, N. Topsakal, Y. Guldu // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1155–1172. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Sturm–Liouville problem with linear discontinuities is investigated in the case where an eigenparameter appears not only in a differential equation but also in boundary conditions. Properties and the asymptotic behavior of spectral characteristics are studied for the Sturm–Liouville operators with Coulomb potential that have discontinuity conditions inside a finite interval. Moreover, the Weyl function for this problem is defined and uniqueness theorems are proved for a solution of the inverse problem with respect to this function.