Бесконечномерные самосопряженные дифференциальные операторы Лапласа—Леви
Рассматриваются порожденные симметризованным дифференциальным выражением Лапласа — Леви операторы в гильбертовом пространстве функций бесконечного числа переменных, интегрируемых с квадратом по гауссовой мере. Строится ортогональная система полиномов таких, что применение к полиному симметризоваиног...
Збережено в:
Дата: | 1983 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1983
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166340 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Бесконечномерные самосопряженные дифференциальные операторы Лапласа—Леви / М.Н. Феллер // Український математичний журнал. — 1983. — Т. 35, № 2. — С. 200–206. — Бібліогр.: 12 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассматриваются порожденные симметризованным дифференциальным выражением Лапласа — Леви операторы в гильбертовом пространстве функций бесконечного числа переменных, интегрируемых с квадратом по гауссовой мере. Строится ортогональная система полиномов таких, что применение к полиному симметризоваиного лапласиана Леви нетривиально. Показывается, что оператор, построенный по симметризова иному выражению Лапласа — Леви, существенно самосопряжен. |
---|