О граничном поведении решений уравнений Бельтрами

Показано, що будь-який гомеоморфний розв’язок рiвняння Бельтрамi ∂¯f=μ∂f класу Соболєва Wⁱ,ⁱloc є так званим нижнiм Q-гомеоморфiзмом з Q(z)=Kμ(z), де Kμ — дилатацiйне вiдношення цього рiвняння. На цiй основi розвинено теорiю граничної поведiнки та усунення сингулярностей таких розв’язкiв....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Ковтонюк, Д.А., Петков, И.В., Рязанов, В.И.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2011
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166356
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О граничном поведении решений уравнений Бельтрами / Д.А. Ковтонюк, И.В. Петков, В.И. Рязанов // Український математичний журнал. — 2011. — Т. 63, № 8. — С. 1078–1091. — Бібліогр.: 27 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Показано, що будь-який гомеоморфний розв’язок рiвняння Бельтрамi ∂¯f=μ∂f класу Соболєва Wⁱ,ⁱloc є так званим нижнiм Q-гомеоморфiзмом з Q(z)=Kμ(z), де Kμ — дилатацiйне вiдношення цього рiвняння. На цiй основi розвинено теорiю граничної поведiнки та усунення сингулярностей таких розв’язкiв.