О граничном поведении решений уравнений Бельтрами
Показано, що будь-який гомеоморфний розв’язок рiвняння Бельтрамi ∂¯f=μ∂f класу Соболєва Wⁱ,ⁱloc є так званим нижнiм Q-гомеоморфiзмом з Q(z)=Kμ(z), де Kμ — дилатацiйне вiдношення цього рiвняння. На цiй основi розвинено теорiю граничної поведiнки та усунення сингулярностей таких розв’язкiв....
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166356 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О граничном поведении решений уравнений Бельтрами / Д.А. Ковтонюк, И.В. Петков, В.И. Рязанов // Український математичний журнал. — 2011. — Т. 63, № 8. — С. 1078–1091. — Бібліогр.: 27 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Показано, що будь-який гомеоморфний розв’язок рiвняння Бельтрамi ∂¯f=μ∂f класу Соболєва Wⁱ,ⁱloc є так званим нижнiм Q-гомеоморфiзмом з Q(z)=Kμ(z), де Kμ — дилатацiйне вiдношення цього рiвняння. На цiй основi розвинено теорiю граничної поведiнки та усунення сингулярностей таких розв’язкiв. |
---|