Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1

If T or T∗ is an algebraically wF(p,r,q) operator with p,r>0 and q≥1 acting on an infinite-dimensional separable Hilbert space, then we prove that the Weyl theorem holds for f(T), for every f∈Hol(σ(T)), where Hol(σ(T)) denotes the set of all analytic functions in an open neighborhood of σ(T). Mor...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Rashid, M.H.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166357
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1 / M.H.M. Rashid // Український математичний журнал. — 2011. — Т. 63, № 8. — С. 1092–1102. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:If T or T∗ is an algebraically wF(p,r,q) operator with p,r>0 and q≥1 acting on an infinite-dimensional separable Hilbert space, then we prove that the Weyl theorem holds for f(T), for every f∈Hol(σ(T)), where Hol(σ(T)) denotes the set of all analytic functions in an open neighborhood of σ(T). Moreover, if T∗ is a wF(p,r,q) operator with p,r>0 and q≥1, then the a-Weyl theorem holds for f(T). Also, if T or T∗ is an algebraically wF(p,r,q) operators with p,r>0 and q≥1, then we establish spectral mapping theorems for the Weyl spectrum and essential approximate point spectrum of T for every f∈Hol(σ(T)), respectively. Finally, we examine the stability of the Weyl theorem and a-Weyl theorem under commutative perturbation by finite-rank operators.