2025-02-22T10:48:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-166357%22&qt=morelikethis&rows=5
2025-02-22T10:48:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-166357%22&qt=morelikethis&rows=5
2025-02-22T10:48:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:48:14-05:00 DEBUG: Deserialized SOLR response

Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1

If T or T∗ is an algebraically wF(p,r,q) operator with p,r>0 and q≥1 acting on an infinite-dimensional separable Hilbert space, then we prove that the Weyl theorem holds for f(T), for every f∈Hol(σ(T)), where Hol(σ(T)) denotes the set of all analytic functions in an open neighborhood of σ(T). Mor...

Full description

Saved in:
Bibliographic Details
Main Author: Rashid, M.H.M.
Format: Article
Language:English
Published: Інститут математики НАН України 2011
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/166357
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-166357
record_format dspace
spelling irk-123456789-1663572020-02-20T01:26:34Z Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1 Rashid, M.H.M. Статті If T or T∗ is an algebraically wF(p,r,q) operator with p,r>0 and q≥1 acting on an infinite-dimensional separable Hilbert space, then we prove that the Weyl theorem holds for f(T), for every f∈Hol(σ(T)), where Hol(σ(T)) denotes the set of all analytic functions in an open neighborhood of σ(T). Moreover, if T∗ is a wF(p,r,q) operator with p,r>0 and q≥1, then the a-Weyl theorem holds for f(T). Also, if T or T∗ is an algebraically wF(p,r,q) operators with p,r>0 and q≥1, then we establish spectral mapping theorems for the Weyl spectrum and essential approximate point spectrum of T for every f∈Hol(σ(T)), respectively. Finally, we examine the stability of the Weyl theorem and a-Weyl theorem under commutative perturbation by finite-rank operators. У випадку, коли T або T∗ — оператори, що алгебраїчно належать класу wF(p,r,q), де p,r>0,q≥1i дiють на нескiнченновимiрному сепарабельному гiльбертовому просторi, доведено, що теорема Вейля виконується для f(T) при кожному f∈Hol(σ(T)), де Hol(σ(T)) — множина всiх аналiтичних функцiй у вiдкритому околi σ(T). Крiм того, якщо T∗ — оператор класу wF(p,r,q), де p,r>0 i q≥1, то a-теорема Вейля виконується для f(T). У випадку, коли T або T∗ — оператори, що алгебраїчно належать класу wF(p,r,q) при p,r>0 i q≥1, встановлено теореми про спектральне вiдображення, вiдповiдно, для спектра Вейля та для iстотного наближеного точкового спектра оператора T для кожного f∈Hol(σ(T)). Дослiджено стiйкiсть теореми Вейля та a-теореми Вейля при комутативному збуреннi операторами скiнченного рангу. 2011 Article Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1 / M.H.M. Rashid // Український математичний журнал. — 2011. — Т. 63, № 8. — С. 1092–1102. — Бібліогр.: 25 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166357 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Rashid, M.H.M.
Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
Український математичний журнал
description If T or T∗ is an algebraically wF(p,r,q) operator with p,r>0 and q≥1 acting on an infinite-dimensional separable Hilbert space, then we prove that the Weyl theorem holds for f(T), for every f∈Hol(σ(T)), where Hol(σ(T)) denotes the set of all analytic functions in an open neighborhood of σ(T). Moreover, if T∗ is a wF(p,r,q) operator with p,r>0 and q≥1, then the a-Weyl theorem holds for f(T). Also, if T or T∗ is an algebraically wF(p,r,q) operators with p,r>0 and q≥1, then we establish spectral mapping theorems for the Weyl spectrum and essential approximate point spectrum of T for every f∈Hol(σ(T)), respectively. Finally, we examine the stability of the Weyl theorem and a-Weyl theorem under commutative perturbation by finite-rank operators.
format Article
author Rashid, M.H.M.
author_facet Rashid, M.H.M.
author_sort Rashid, M.H.M.
title Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
title_short Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
title_full Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
title_fullStr Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
title_full_unstemmed Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
title_sort weyl's theorem for algebrascally wf(p,r,q) operators with p,q>0 and q≥1
publisher Інститут математики НАН України
publishDate 2011
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/166357
citation_txt Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1 / M.H.M. Rashid // Український математичний журнал. — 2011. — Т. 63, № 8. — С. 1092–1102. — Бібліогр.: 25 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT rashidmhm weylstheoremforalgebrascallywfprqoperatorswithpq0andq1
first_indexed 2023-10-18T22:18:16Z
last_indexed 2023-10-18T22:18:16Z
_version_ 1796155165913382912