Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂
For a given category KAC₂, the present paper deals with an existence problem of the category DTC₂(k) which is equivalent to KAC₂, where DTC₂(k) is the category whose objects are simple closed k-curves with even number l of elements in Zⁿ, l ≠ 6 and morphisms are (digitally) k-continuous maps, and...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166474 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ / S.-E. Han // Український математичний журнал. — 2015. — Т. 67, № 8. — С. 1122–1133. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-166474 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1664742020-02-23T01:25:42Z Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ Han, S.-E. Статті For a given category KAC₂, the present paper deals with an existence problem of the category DTC₂(k) which is equivalent to KAC₂, where DTC₂(k) is the category whose objects are simple closed k-curves with even number l of elements in Zⁿ, l ≠ 6 and morphisms are (digitally) k-continuous maps, and KAC₂ is the category whose objects are simple closed A-curves and morphisms are A-maps. To address this issue, the paper starts with the category, denoted by KAC₁, whose objects are connected nD Khalimsky topological subspaces with Khalimsky adjacency and morphisms are A-maps in [Han S. E., Sostak A. A compression of digital images derived from a Khalimsky topological structure // Comput. and Appl. Math. – 2013. – 32. – P. 521 – 536]. Based on this approach, in KAC₁ the paper proposes the notions of an A-homotopy and an A-homotopy equivalence, and classifies spaces in KAC₁ or KAC₂ in terms of an A-homotopy equivalence. Finally, the paper proves that for a given category KAC₂ there is DTC₂(k) which is equivalent to KAC₂. Для заданої категорiї KAC₂ вивчено проблему iснування категорiї DTC₂(k), що еквiвалентна KAC₂, де DTC₂(k) — категорiя, об’єктами якої є простi замкненi k-кривi з парним числом l, l ≠ 6, елементiв в Zⁿ, а морфiзмами — (цифрово) k-неперервнi вiдображення, тодi як KAC₂ — категорiя, об’єктами якої є простi замкненi A-кривi, а морфiзми є A-вiдображеннями. Наш виклад ми починаємо з категорiї, що позначена KAC₁, об’єктами якої є nD зв’язнi топологiчнi пiдпростори Халiмського з сумiжнiстю Халiмського, а морфiзми є A-вiдображеннями, що визначенi в [Han S. E., Sostak A. A compression of digital images derived from a Khalimsky topological structure // Comput. and Appl. Math. – 2013. – 32. – P. 521 – 536]. На основi запропонованого пiдходу в категорiї KAC₁ введено поняття A-гомотопiї та A-гомотопiчної еквiвалентностi, а простори з KAC₁ або KAC₂ класифiковано в термiнах A-гомотопiчної еквiвалентностi. Насамкiнець доведено, що для заданої категорiї KAC₂ iснує DTC₂(k), еквiвалентнa KAC₂. 2015 Article Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ / S.-E. Han // Український математичний журнал. — 2015. — Т. 67, № 8. — С. 1122–1133. — Бібліогр.: 10 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166474 513.8 en Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Статті Статті |
spellingShingle |
Статті Статті Han, S.-E. Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ Український математичний журнал |
description |
For a given category KAC₂, the present paper deals with an existence problem of the category DTC₂(k) which is
equivalent to KAC₂, where DTC₂(k) is the category whose objects are simple closed k-curves with even number l of
elements in Zⁿ, l ≠ 6 and morphisms are (digitally) k-continuous maps, and KAC₂ is the category whose objects are
simple closed A-curves and morphisms are A-maps. To address this issue, the paper starts with the category, denoted
by KAC₁, whose objects are connected nD Khalimsky topological subspaces with Khalimsky adjacency and morphisms
are A-maps in [Han S. E., Sostak A. A compression of digital images derived from a Khalimsky topological structure //
Comput. and Appl. Math. – 2013. – 32. – P. 521 – 536]. Based on this approach, in KAC₁ the paper proposes the notions
of an A-homotopy and an A-homotopy equivalence, and classifies spaces in KAC₁ or KAC₂ in terms of an A-homotopy
equivalence. Finally, the paper proves that for a given category KAC₂ there is DTC₂(k) which is equivalent to KAC₂. |
format |
Article |
author |
Han, S.-E. |
author_facet |
Han, S.-E. |
author_sort |
Han, S.-E. |
title |
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ |
title_short |
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ |
title_full |
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ |
title_fullStr |
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ |
title_full_unstemmed |
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ |
title_sort |
existence of the category dtc₂(k) equivalent to the given category kac₂ |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/166474 |
citation_txt |
Existence of the Category DTC₂(K) Equivalent to the Given Category KAC₂ / S.-E. Han // Український математичний журнал. — 2015. — Т. 67, № 8. — С. 1122–1133. — Бібліогр.: 10 назв. — англ. |
series |
Український математичний журнал |
work_keys_str_mv |
AT hanse existenceofthecategorydtc2kequivalenttothegivencategorykac2 |
first_indexed |
2023-10-18T22:18:33Z |
last_indexed |
2023-10-18T22:18:33Z |
_version_ |
1796155178300211200 |