Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations
A method has been developed to determine normal components of the stress tensor in deformed geological media on the basis of geophysical well logging. The theoretical basis of the method is the acoustic correlations of the non-classical linearized approach of nonlinear elastodynamics. Analytical for...
Saved in:
Date: | 2019 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут геофізики ім. С.I. Субботіна НАН України
2019
|
Series: | Геофизический журнал |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/167649 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations / H.H. Guliyev, K.B. Aghayev, G.A. Sultanova // Геофизический журнал. — 2019. — Т. 41, № 6. — С. 173-182. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-167649 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1676492020-04-04T01:26:02Z Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations Guliyev, H.H. Aghayev, K.B. Sultanova, G.A A method has been developed to determine normal components of the stress tensor in deformed geological media on the basis of geophysical well logging. The theoretical basis of the method is the acoustic correlations of the non-classical linearized approach of nonlinear elastodynamics. Analytical formulae are obtained to calculate the stress in the geological medium in cases of small and large deformations. Разработан метод определения нормальных компонент тензора напряжений в деформированных геологических средах на основе баз данных геофизических исследований глубоких скважин. Теоретичною основой метода является акустические соотношение неклассического линеаризованного подхода нелинейной еластодинамикы. Получены аналитические формулы расчета напряжений в геологической среде в случаях малых и больших деформирований. Розроблено метод визначення нормальних компонентів тензора напружень в деформованих геологічних середовищах на основі баз даних геофізичних досліджень глибоких свердловин. Теоретичною основою методу є акустичні співвідношення некласичного лінеаризованого підходу нелінійної еластодинаміки. Отримано аналітичні формули розрахунку напружень в геологічному середовищі у випадках малих і великих деформувань. 2019 Article Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations / H.H. Guliyev, K.B. Aghayev, G.A. Sultanova // Геофизический журнал. — 2019. — Т. 41, № 6. — С. 173-182. — Бібліогр.: 33 назв. — англ. 0203-3100 DOI: https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190074 http://dspace.nbuv.gov.ua/handle/123456789/167649 550.834 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A method has been developed to determine normal components of the stress tensor in deformed geological media on the basis of geophysical well logging. The theoretical basis of the method is the acoustic correlations of the non-classical linearized approach of nonlinear elastodynamics. Analytical formulae are obtained to calculate the stress in the geological medium in cases of small and large deformations. |
format |
Article |
author |
Guliyev, H.H. Aghayev, K.B. Sultanova, G.A |
spellingShingle |
Guliyev, H.H. Aghayev, K.B. Sultanova, G.A Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations Геофизический журнал |
author_facet |
Guliyev, H.H. Aghayev, K.B. Sultanova, G.A |
author_sort |
Guliyev, H.H. |
title |
Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations |
title_short |
Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations |
title_full |
Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations |
title_fullStr |
Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations |
title_full_unstemmed |
Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations |
title_sort |
determination of stress in the geological medium on the basis of well data using acoustoelastic correlations |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2019 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/167649 |
citation_txt |
Determination of stress in the geological medium on the basis of well data using acoustoelastic correlations / H.H. Guliyev, K.B. Aghayev, G.A. Sultanova // Геофизический журнал. — 2019. — Т. 41, № 6. — С. 173-182. — Бібліогр.: 33 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT guliyevhh determinationofstressinthegeologicalmediumonthebasisofwelldatausingacoustoelasticcorrelations AT aghayevkb determinationofstressinthegeologicalmediumonthebasisofwelldatausingacoustoelasticcorrelations AT sultanovaga determinationofstressinthegeologicalmediumonthebasisofwelldatausingacoustoelasticcorrelations |
first_indexed |
2025-07-15T01:10:35Z |
last_indexed |
2025-07-15T01:10:35Z |
_version_ |
1837673313812348928 |
fulltext |
Determination of stress in the geological meDium on the basis of well Data ...
Геофизический журнал № 6, Т. 41, 2019 173
Introduction. The non-classically linear-
ized approach (NLA) of nonlinear elastody-
namics [Abasov et al., 2000; Alexandrov et al.,
2001; Vyzhva et al., 2005; Guliyev et al., 2011,
2016; Guliyev, 2018b] has found wide use in
researches of various problems of modern
geodynamics and seismic exploration. The
basis of this approach is the study of the prop-
УДК 550.834 DOI: https://doi.org/10.24028/Gzh.0203-3100.V41I6.2019.190074
Determination of stress in the geological medium
on the basis of deep well data using acoustoelastic
correlations
H. H. Guliyev, K. B. Aghayev, G. A. Sultanova, 2019
Institute of Geology and Geophysics of Azerbaijan National Academy of Sciences,
Baku, Azerbaijan
Received 11 July 2019
Розроблено метод визначення нормальних компонентів тензора напружень в де-
формованих геологічних середовищах на основі баз даних геофізичних досліджень
глибоких свердловин. Те-оретичною основою методу є акустичні співвідношення не-
класичного лінеаризованого підходу нелінійної еластодинаміки. Отримано аналітичні
формули розрахунку напружень в геологічному середовищі у випадках малих і ве-
ликих деформувань. Використано дані геофізичних досліджень свердловин, розта-
шованих в Південнокаспійському басейні. Складено тонкошаруваті одновимі-рні
моделі середовища за швидкостями поширення поздовжніх і поперечних хвиль,
щільностю та літологією порід. Товщина кожного шару моделей становить кілька
сантиметрів, який дорів-нює кроку спостережень за розрізом свердловини. Для вра-
хування впливу зміни термобаричних умов геологічного середовища на акустичні
властивості порід дані кожної моделі, що відносяться до однієї і тієї ж літології порід,
розчленовані на кластери з застосуванням штучних нейронних мереж. За моделями
для кожної літології порід і кластера даних розраховано значення модулів пружності
2-го і 3-го порядків і нормальних компонент тензора напруження. Виявлено, що пру-
жні модулі 3-го порядку набагато чутливіші до мінливості пружних властивостей
середовища, ніж модулі 2-го порядку. Отримані чисельні результати за всіма кла-
стерами кожної літології по-рід усереднені. При цьому кількість шарів середовища
по кожному кластеру даних використано як ваги. А при осереднені результатів за
всіма породами, як ваги використано кількість шарів середовища за кожною по-
родою. Вивчено залежності між чисельними значеннями нормальних компонент
тензора напруження, що спричинені геостатичним тиском, і аналогічними величина-
ми, викликаними геодинамічними змінами відповідного компонента тензора напру-
ження. Вияв-лено, що напруження, зумовлені геостатичним тиском, істотно нижчі,
ніж напруження, зумов-лені геодинамічними змінами. Отримані акустичні формули
дають змогу визначити напруження в геологічному середовищі будь-якого регіону
з урахуванням впливу сучасних геодинамічних процесів.
Ключові слова: акустичні співвідношення, напруження, модуль пружності, пружні
хвилі, геофізичне дослідження свердловин, кластер даних.
agation of elastic waves in the pre-stressed
media [Biot, 1965; Guliyev, Dzhabbarov, 1998;
Guz, 2004; Akbarov, 2015; Guliyev et al., 2018;
Guliyev, 2018a]. The use of the NLA allows
bringing complex nonlinear problems of dy-
namics to well-studied linear problems by
non-classical linearization (linearization is not
carried out in a small neighborhood of the un-
h. h. guliyev, K. b. aghayev, g. a. sultanova
174 Геофизический журнал № 6, Т. 41, 2019
deformed state and in a small neighborhood
of the current state in contrast to the classi-
cal theory of elasticity and linear waves). In
this case, all nonlinearities are included in the
coefficients of the equation of motion in dis-
turbances as known functions or parameters.
The use of the NLA in tasks of processing
and interpretation of results of well-logging
operations (WLO) [Guliyev et al., 2016] and
seismic explorations [Guliyev et al., 2011] al-
low obtaining new quantitative results for the
kinematic and dynamic parameters of elastic
waves [Guliyev, Dzhabbarov, 1998], finding
out the reason to obtain large and negative
values of Poisson’s ratio [Guliyev, 2000] in
studies of problems of seismic explorations.
It is shown [Guz, 2004] that experimentally
observed effects in compressible concerning
rigid materials in the theory are well described
in case of involving elastic potentials of the
Murnaghan type and using «true» velocities.
Therefore, the use of the NLA in problems of
geophysics, seismology, in particular seismic
exploration requires a preliminary determi-
nation of elasticity moduli of the third order
along with the linear physical and mechani-
cal properties of the geological medium that
characterize nonlinear deformation. The ex-
perimental results of these rocks are almost
absent for rocks of the sedimentary series
[Bayuk et al., 1988]. Exceptions make up re-
sults [Bakulin, Protoseniya, 1982; Yin, Rasolo-
fosaon, 1994; Alexandrov et al., 2001; Guliyev
et al., 2016]. A theoretical method based on
database of wells is proposed for their deter-
mination to fill this gap [Guliyev et al., 2016].
The influence of initial stress on the nature
of the propagation of elastic waves in rocks
and sands has been experimentally studied
[Li, Tao, 2015; Teachavorasinskun, Pongvi-
thayapan, 2016]. Another interesting variant
of study of effects of initial stress is suggested
[Tromp et al., 2019]. The main linear and non-
linear physico-mechanical properties of the
geological medium, the kinematic parameters
of elastic waves, and the main components
of the stress tensor are analytically related
to each other in acousto-elastic correlations
in the NLA. The values of the principal com-
ponents of the stress tensor are determined
considering different options of the theory of
initial deformation using these correlations
and database created [Guliyev et al., 2016]
in this manuscript.
The proposed approach fundamentally dif-
fers from the existing approaches of determi-
nation of paleostress based on focal mecha-
nisms of earthquakes [Balakina et al., 1972;
Reinecker et al., 2005; Aghayeva, Babayev,
2008]. It is known that the type of stress state
is approximately determined using the prin-
ciples [Gintov, 2005; Anderson, 2007] on type
of fracture in this approach. At the same time,
the stress-strain state is characterized by the
orientation of the main axes of normal stress.
This approach is more acceptable if there are
large fractures in the studied region. Never-
theless, the resulting deformation modes are
conditional. These methods are good when
there are data on the signs of the first arriv-
als of pressure waves for a large number of
seismic stations for earthquakes with a magni-
tude of m > 4. The advanced CASMO method
is also used on the project of construction the
World Stress Map [Reinecker et al., 2005;
Müller et al., 2005]. At the same time, events
are grouped using the so-called Composite
Focal Mechanism (CFM) and single focal
mechanism (SFM) [heidbach et al., 2004].
Acoustic correlations obtained [Guz, 2004]
in linear approximation (concerning acting
stress) for compressible rigid isotropic bodies
with an elastic potential of the Murnaghan
type have been successfully applied in devel-
oping the basis of a non-destructive ultrason-
ic method to determine uniaxial and biaxial
stress in solid bodies [Guz et al., 1974; Guz,
2004]. The method is based on laws of the
propagation of elastic waves in compressible
concerning rigid materials with initial stress
applied to infinite bodies and intended for
materials such as metals and alloys and for
determining stress when its value is less than
the durability limit.
This method is developed to determine
quantitative values of basic components of
stress tensor at the point of the geological
medium, i.e. in local zones, which have the
highest values in oil field geology during
drilling and operation of wells.
Determination of stress in the geological meDium on the basis of well Data ...
Геофизический журнал № 6, Т. 41, 2019 175
All modern geodynamic changes related
to neotectonics, seismicity, the action of mud
volcanoes, the fragmentation of separate
blocks, the drilling of deposits, the intensity
of hydrocarbon extraction, water injection
and other tectonic impacts without exception
are reflected in the velocities of elastic waves.
Therefore, they are also taken into account
while determining stress along with the influ-
ence of general tectonic processes.
Database. Thin-layered one-dimensional
models (1D) are used on velocities of pressure
and shear waves, density of rocks of data on
lithological dismemberment of the geological
medium while calculating the elasticity mod-
uli as source data. The models are constructed
according to data of well-logging operations
of various types of two wells located in the
South Caspian basin [Babayev, Gadzhiev,
2006]. Wells are highly oil and gas bearing.
The depth interval of explorations on wells
1 and 2 is 600―3800 m and 2500―5800 m
accordingly. Geophysical measurements in
each well are made with a step of 10 cm. This
step is taken as the thickness of each layer of
the medium. Layers with anomalous values of
physical parameters arising due to technical
reasons have not been used in the calculations
while measuring well logging. The lithologi-
cal section of the first well mainly consists of
5 types of sedimentary rocks. Codes of lithol-
ogy of rocks are indicated: 1 ― anhydride; 2
― green and gray argillite, shale, clay, com-
pacted clay; 3 ― brown argillite; 4 ― sand;
5 ― siltstone, silt [Guliyev et al., 2016]. The
lithological section on the second well con-
sists of 4 types of rocks: 1 ― clay, argillite,
schist; 5 ― silt, siltstone; 7 ― gypsum anhy-
dride; 9 ― sand, sandstone.
The distance between the wells is several
tens of km. The same stratigraphic boundary
opened by these wells differs approximately
2200 m on depth. Therefore, the rocks of the
same layers of the medium along these wells
are in different temperature and pressure con-
ditions. Therefore, the petrophysical proper-
ties of the same rocks along the wellbore dif-
fer significantly.
Further, some petrophysical features of
rocks of the studied medium are considered
according to well logging data 1. The correla-
tions between seismic velocities and density
of rocks have been constructed (Fig. 1). Ve-
locities of pressure (VS) and shear (VS) waves
vary on the same types of rocks at constant
value of density in a wide range.
The value of velocity, as well as its disper-
sion also increases due to increase of density.
There are no univocal correlations between
velocity and density.
The numerical values of VS and vs with
variations increase due to increase of geo-
static pressure (Fig. 2). It follows from the
figure that values of velocities differ accord-
ing to lithologies of rocks. It can be seen on
the graph as a band of values of velocities at
close values of pressure. here, the dispersion
of values of velocities on the pressure wave
is greater than on the shear wave. It is due to
the oil and gas content of rocks of separate
layers of the medium. Thus, unlike the pres-
sure wave, the velocity of shear wave almost
doesn’t depend on fluid saturation of rocks
[Garotta, 2000].
Graphs show that correlations between the
values of VS, VS and density differ significantly
according to lithology of rocks and vary for
rocks of the same lithology depending on the
pressure in the medium. It should be noted
that layers of the medium belonging to the
same lithology actually differ in composition
of rocks. Data are divided into clusters to con-
sider these factors while calculating elastic
properties of rocks of the same lithology. It
allowed determining layers of the medium be-
longing to one and the same lithology which
have similar laws on change of pethrophysi-
cal properties depending on the change of
pressure.
Data on layers of the medium related to the
same rocks are divided into 10 clusters using
neural networks in this manuscript [Poulton,
2002; Chashkov, Valery, 2011]. Optimal values
of parameters of clusterization have been de-
termined by testing.
The values of Poisson’s ratio, elasticity
moduli of the 3rd order a, b and c are calcu-
lated using well logging data according to the
method [Guliyev et al., 2016]. The nature of
the distribution of values of moduli differs in
h. h. guliyev, K. b. aghayev, g. a. sultanova
176 Геофизический журнал № 6, Т. 41, 2019
well 1 and 2 significantly. The large disper-
sion of values of elasticity moduli along the
wellbore mainly characterizes thin layering
and strong contrast of elastic properties of the
medium (Fig. 3, а and 4, а). Comparison of
dispersions of values of velocities, Poisson’s
ratio and moduli a, b and c show that elasticity
moduli of the third order are much more sen-
sible to variability of properties of the medium
than moduli of the second order.
Values of moduli a and b have positive and
negative values with high dispersion. Depths
with positive values prevail in the module a
(Fig. 3, b), and negative values in the module
b (Fig. 3, c). Similar nature of change of mod-
uli values is observed on well 2 (Fig. 4, a, b).
Values of moduli c are constant within each
data cluster (Figs. 3, c and 4, c). Values c vary
on clusters and rocks. Its value generally in-
creases in depth. Such a nature of the elastic-
ity moduli is observed according to the data
of both wells.
Analysis of the used initial data on density
of rocks, velocities of propagation of pressure
and shear waves, Posson’s ratio, elasticity
moduli and a, b and c show that they have
high quality. These data reliably characterize
acoustic and elastic properties of the studied
complexly constructed geological medium
and are used to determine stress state further.
Basic calculation formulae. The basic ki-
nematic parameters of propagating elastic
waves in deformed media satisfy the follow-
ing acoustoelastic correlations [Guz, 2004]:
b a a a1 11 11
0
12 22
0
13 33
0= + +σ σ σ ,
b a a a2 21 11
0
22 22
0
23 33
0= + +σ σ σ , (1)
b a a a3 31 11
0
32 22
0
33 33
0= + +σ σ σ .
Based on these correlations of the NLA to
calculate the basic components of the stress
tensor we find:
σ11
0 1
0
=
A
A
, σ22
0 2
0
=
A
A
,
σ33
0 3
0
=
A
A
, A0 0≠ . (2)
Where the following symbols are taken:
A
a a a
a a a
a a a
0
11 12 13
21 22 23
31 32 33
=
, A
b a a
b a a
b a a
1
1 12 13
2 22 23
3 32 33
=
,
A
a b a
a b a
a b a
2
11 1 13
21 2 23
31 3 33
=
,
A
a a b
a a b
a a b
3
11 12 1
21 22 2
31 32 3
=
. (3)
Specific structures of elastic potentials
should be set and forms of elastic oscillations
(«true» or «natural» velocities) should be se-
lected [Guz, 2004] to carry out the calcula-
tions. The algebraic expressions have been
obtained while using the «true» velocities,
the theory of large initial deformations and
the elastic potential of the Murnaghan type
for the elements aij and bi (i=1, 2, 3; j=1, 2, 3)
determinants [Guz, 2004]:
a b c11 2 2 4 2= +( ) + + +( ) +λ µ λ µ
+ +( ) +2 3 0a b Kµ µ ,
a a b b c12 2 2 4 2= +( ) − + + +( )µ λ λ µ ,
a a b b c13 2 2 4 2= +( ) − + + +( )µ λ λ µ ,
a C b K21 01
4
3= +( ) +
+ +λ µ
µ
,
a C b22 2 1
4
= +( ) +
+λ µ
µ
,
a C b23 2 1
4
= − +
+λ
µ
,
a C b K31 01
4
3= +( ) +
+ +λ µ
µ
,
a b C
32 2 1
4
= − +
λ
µ
,
a C b33 1
4
= +( ) +
+λ µ
µ
,
b K C
C
lx
l
1 0
1
2
0
23 2 1= +( ) −
µ λ µ ,
b K C
C
sx
s
2 0
1
2
0
23 1= −
µ ,
Determination of stress in the geological meDium on the basis of well Data ...
Геофизический журнал № 6, Т. 41, 2019 177
Fig. 1. Dependencies of velocities of pressure and shear
waves on density of rocks of various lithology. Well 1.
Fig. 2. Correlations of velocity of pressure and shear
waves on geostatic pressure on rocks of different lithol-
ogy. Well 1. Colors lithologies are shown in Fig. 1.
Fig. 3. Distribution of values of Poisson’s ratio depending on the depth of different rocks of the medium according
to well 1 logging data. Colors lithologies are shown in Fig. 1.
₈
h. h. guliyev, K. b. aghayev, g. a. sultanova
178 Геофизический журнал № 6, Т. 41, 2019
Fig. 4. Distribution of values of Poisson’s ratio depending on the depth of different rocks of the medium according
to well 2 logging data.
Fig. 5. Correlations between normal components of
stress tensor on well 1.
Fig. 6. Correlations between normal components of
stress tensor on well 2.
Determination of stress in the geological meDium on the basis of well Data ...
Геофизический журнал № 6, Т. 41, 2019 179
b K C
C
sx
s
3 0
3
2
0
23 1= −
µ , (4)
where K0, l, m ― elasticity moduli of the sec-
ond order; a, b, c ― elasticity moduli of the
third order in the deformed (Pfi0) medium;
Clx1, Csx2, Csx3 ― velocities of pressure sh and
SVtypes of shear waves accordingly propa-
gating along the axis lx1, sx2 and sx3 in the
deformed medium (Pfi0); Cl0 ― pressure ve-
locity, Cs ― velocities of sh and sv types of
shear waves in the undeformed (Pfi0) medium,
accordingly.
Directions of axes in the medium are: lx1
(Z-vertical), lx2 (X-horizontal), lx3 (Y-horizon-
tal).
The elements are determined according
to the following correlations in case of the
second version of the theory of small initial
deformations [Guz, 2004]:
a b c11 2 2 2= +( ) + + +( ) +λ µ λ µ
+ +( ) +2 3 0a b Kµ µ ,
a a b b c12 2 2 2= +( ) − + + +( )µ λ λ µ ,
a a b b c13 2 2 2= +( ) − + + +( )µ λ λ µ ,
a C b K21 02
4
2 3= +( ) +( ) + +λ µ
µ
λ µ , (5)
a C b22 4
2= − + +( ) +λ
µ
λ µ ,
a C b23 = − − +λ
λ
µ
,
a
C
b K31 02
2
4
3= +( ) + +( )
+ +λ µ
λ µ
µ
,
a C b32 = − − +λ
λ
µ
,
a
C
b33
2
4
= − +
+( )
+λ
λ µ
µ
.
It's possible to obtain calculation formulae
similar to (4) and (5) while using «natural»
velocities based on the acoustoelastic correla-
tions [Guz, 2004].
Numerical results and discussion. The
data given in Fig. 5 and Fig. 6. are separately
averaged to obtain values of elasticity moduli
on the entire well. At the same time, the num-
ber of medium layers for each data cluster is
used as weights using the same lithology of
rocks. The number of medium layers for each
rock is used as weights while averaging the
results for all rocks. The obtained values of
elasticity moduli on the entire well are given
in Table 1 and Tab. 2. The numerators contain
the results related to the first version of the
theory of small and the theory of large initial
deformation. Forms of elastic oscillations are
modeled considering «true» velocities. The
results obtained within the second version
of the theory of small initial deformation are
given in denominators in Tab. 1.
The results of the calculation of normal
components of stress tensor are given in Table
2. The last columns contain the results of cal-
culating the Lode-Nadai coefficient [Gintov,
2005; Gzovsky, 1975].
Simple analytical expressions are obtained
to calculate the principal components of the
stress tensor in the geological medium using
the Lagrangian method of describing its non-
linear deformation.
The results given in Table 2 show that the
calculated values of the normal components
of the stress tensor don't differ qualitatively
within the various versions of the theories of
initial deformation. In this case, all the nor-
mal components of the stress tensor are com-
pressive. The values of the stress within the
second version of the theory of small initial
strains are larger than similar values to the
theory of large initial deformation.
The studied medium has a complex geolog-
ical structure and a thermobaric state. There
is a high-amplitude anticline structure and
thick layers with anomalous high plastic pres-
sure. The rocks of separate layers are saturat-
ed with oil and gas [Babayev, Gadzhiev, 2006].
A comparative analysis is carried out to de-
termine the reliability of the obtained results.
The correlations between the stress compo-
nents are studied. The results of this manu-
script (points on the graph) and the results of
the standard calculation of stress components
(continuum line) caused only by geostatic
pressure are used [Gintov, 2005].
The correlation between σ11
0 and σ22
0 is
shown according to well data in Fig. 5. The
h. h. guliyev, K. b. aghayev, g. a. sultanova
180 Геофизический журнал № 6, Т. 41, 2019
graphs of correlations are constructed on
each lithology of rocks for the cases of the
first version of the theory of small and large
initial (T1) and the second vaersion of the the-
ory of small initial (T2) deformation. It follows
from the graph that as the values σ11
0 and σ22
0
increase, their dispersion also increases. It is
explained by the fact that the rocks lying in
the deep layers are in more complex stress
states. The (middle) values σ11
0 and σ22
0 aver-
aged on 5 types of lithology of rocks are given.
The continuum line approximates the nu-
merical data of correlations between σ11
0 and
σ22
0 well. It means that the proposed method
allows obtaining reliable results.
The highest values of stress components
caused by geostatic pressure (–0,0486 and
–0,0813 GPa) are significantly lower than the
calculated values on σ11
0 and σ22
0 (–0,0656 and
–0,0984 GPa) (see Fig. 5). It shows that there
are other causes of stress occurrence in ad-
dition to forces of geostatic pressure in the
geological medium.
Similar results have also been obtained
on data of well 2 (see Fig. 6). The rocks of
the same stratigraphic complex are in signifi-
cantly higher temperature and pressure con-
ditions than in well 1. Therefore, the values
σ11
0 and σ22
0 differ even more from geostatic
pressure according to well data. As intensive
geodynamic processes of a local and regional
character take place in the studied sedimen-
tary cover of 25―30 km capacity. Diapiric and
anticlinal structures have been developed.
The occurred dynamic processes appear in
the form of frequent earthquakes and erup-
tions of mud volcanoes.
Thus, the proposed method allows reliably
determining normal components of stress
state in the geological medium considering
modern geodynamic variability.
Acknowledgements. The research de-
scribed in this manuscript has been financed
by the Natural Science Foundation grant
project of the Ukrainian Scientific and Tech-
nological Center #6284.
Ta b l e 1 . Numerical values of elasticity moduli
Well number m, GPa l, GPa a, GPa b, GPa c, GPa
1 4,249
4,249
11,509
11,509
372,609
307,770
–188,713
–144,122
14,945
–39,890
2 6,532
6,532
14,847
14,849
401,953
333,011
–266,311
–206,465
21,655
–57,033
Ta b l e 2. The numerical values of the normal components of the stress tensor
in case of using the elastic potential of the Murnaghan type
Well
number σ11
0 , GPa σ22
0 , GPa σ33
0 , GPa
Lode-Nadai
coefficient
1 –0,05655
–0,06603
–0,03597
–0,03597
–0,03597
–0,03597
–1,000000
–1,000000
2 –0,11123
–0,12677
–0,07026
–0,08905
–0,07026
–0,08905
–1,000003
–1,000000
Determination of stress in the geological medium on
the basis of well data using acoustoelastic correlations
H. H. Guliyev, K. B. Aghayev, G. A. Sultanova, 2019
A method has been developed to determine normal components of the stress tensor in
deformed geological media on the basis of geophysical deep well logging. The theoretical
Determination of stress in the geological meDium on the basis of well Data ...
Геофизический журнал № 6, Т. 41, 2019 181
Abasov, M. T., Guliyev, h. h., & Dzhevanshir, R. D.
(2000). The model of lithosphere development.
vestnik ran, 70(2), 129—135 (in Russian).
Aghayeva, S. T., & Babayev, G. R. (2008). Analysis
of earthquake foci of large and small Cauca-
sus according to the method of constructing a
world stress map. In catalogue of seismofore-
casting research carried out in azerbaijan ter-
ritory (pp. 51—55). Baku (in Russian).
Akbarov, S. D. (2015). Dynamics of Pre-strained
bi-material elastic systems: linearized three-
Dimensional approach. Springer-heildelberg,
Newswork, 1003 p.
Alexandrov, K. S., Prodaivoda, G. T., & Maslov, B. P.
(2001). Method of determination of nonlin-
ear elastic properties of rocks. Doklady ran,
380(1), 109—112 (in Russian).
Anderson, D. (2007). new theory of the earth. Cam-
bridge University Press, New York, USA. 385 p.
Babaev, D. Kh., & Gadzhiev, A. N. (2006). Deep
structure and oil and gas potential of the cas-
pian sea basin. Baku: Nafta-Press, 305 p. (in
Russian).
References
Bakulin, V. N., & Protoseniya, A. G. (1982). The
presence of nonlinear effects during the propa-
gation of elastic waves in rocks. Doklady an
sssr, 263 (2), 314—316 (in Russian).
Balakina, L. M., Vvedenskaya, A. V., Golube-
va, N. V., Misharina, L. A., & Shirokova, E. I.
(1972). field of the earth’s elastic stresses and
the mechanism of earthquake sources. Moscow:
Nauka, 191 p. (in Russian).
Bayuk, E. I., Tomashevskaya, I. S., & Dobry-
nin, V. M. (1988). Physical properties of miner-
als and rocks within high thermodynamic pa-
rameters: handbook. Moscow: Nedra, 255 p.
(in Russian).
Biot, M. A. (1965). Mechanics of incremental de-
formations. Ph.D. Dissertation. New York: Wi-
ley, 560 p.
Garotta, R. (2000). transverse waves: from registra-
tion to interpretation. short course of lectures
for higher educational institutions. The publi-
cation of the American Society of Exploration
Geophysicists (SEG), 221 p. (in Russian)
Chashkov, A. V., & Valery, V. M. (2011). Use of the
cluster analysis and artificial neural network
basis of the method is the acoustic correlations of the non-classical linearized approach of
nonlinear elastodynamics. Analytical formulae are obtained to calculate the stress in the
geological medium in cases of small and large deformations. Geophysical well logging data
located in the South Caspian basin have been used. Thin-layered one-dimensional models
of the medium have been compiled on velocities of pressure and shear waves, density and
lithology of rocks. The thickness of each layer of the model is several centimeters, which
is equal to the observations in the well. The data of each model related to the same rock
lithology is divided into clusters using artificial neural networks to consider the influence
of changes of thermobaric conditions of the geological medium on acoustic properties of
rocks. Values of elasticity moduli of the second and third orders and components of normal
stress tensor have been calculated according to models for each lithology of rocks and
a cluster of data. It has been revealed that elasticity moduli of the third order are much
more sensitive to the variability of elastic properties of the medium than moduli of the
second order. The obtained numerical results on all clusters of each lithology of rocks are
averaged. At the same time, the number of medium layers on each data cluster has been
used as weights. The number of medium layers in each rock has been used as weights
while averaging the results for all the rocks. The correlations between numerical values
of normal components of stress tensor caused by geostatic pressure and similar values
caused by geodynamic changes of stress tensor have been studied. It has been revealed
that values of stress bulk caused by geostatic pressure are significantly lower than stress
caused by geodynamic changes. The obtained acoustic formulae allow determining val-
ues of stress in the geological medium of any region considering the influence of modern
geodynamic processes.
Key words: acoustic correlations, stress, elasticity moduli, geophysical well logging,
data cluster.
h. h. guliyev, K. b. aghayev, g. a. sultanova
182 Геофизический журнал № 6, Т. 41, 2019
technology for log data interpretation. Zhurnal
sibirskogo federalnogo universiteta. tekhnika i
tekhnologiya, 4(4), 453— 462 (in Russian).
Gintov, O. B. (2005). field tectonophysics and its
application in the study of deformation of the
earth’s crust. Kiev: Feniks, 572 p. (in Russian).
Guliyev, h. h. (2000). Determination of Poisson’s
ratio in the strained medi. Doklady an, 370(4),
534—537 (in Russian).
Guliyev, h. h. (2018a). Geomechanical analysis of
elastic parameters of the solid core of the Earth.
geomechanics and engineering, 14(1), 19—27.
https://doi.org/10.12989/gae.2018.14.1.019.
Guliyev, h. h. (2018b). On the elastic parameters
of the strained media. structural engineer-
ing and mechanics, 67(1), 53—67. https://doi.
org/10/12989/sem2018.67.1.053.
Guliyev, h. h., & Aghayev, Kh. B. (2011). Deter-
mination of physicomechanical properties of
sedimentary cover rocks on the basis of seis-
mic, borehole data and the theory of elastic
waves of stressed media. geofizicheskiy zhur-
nal, 33(6), 126—135. https://doi.org/10.24028/
gzh.0203-3100.v33i6.2011.116798 (in Russian).
Guliyev, h. h., Aghayev, Kh. B., & hasanova, G. h.
(2016). Determining the Elastic Moduli of the
Third Order for Sedimentary Rocks Based
on Well-Logging Data. izvestiya, Physics of
the solid earth, 52(6), 836—843. doi: 10.1134/
S1069351316050062.
Guliyev, h. h., & Dzhabbarov, M. D. (1998). The
propagation of elastic waves in the strained
anisotropic media. Doklady akademii nauk azer-
baydzhanskoy ssr, (2), 103—112 (in Russian).
Guliyev, h. h., Javanshir, R. J., & hasanova, G. h.
(2018). Determination of elastic parameters of
the deformable solid bodies with respect to the
Earth model. geomechanics and engineering,
15(5), 1071—1080. https://doi.org/10.12989/
gae.2018.14.1.019.
Guz, A. N. (2004). elastic waves in bodies with
initial (residual) stresses. Kiev: A.S.K., 672 p.
(in Russian).
Guz, A. N., Makhort, F. G., Gushcha, O. I., &
Le bedev, V. K. (1974). fundamentals of the
ul tra sonic non-destructive method for the
de termination of stress in solids. Kiev: Nauko va
Dumka, 106 p. (in Russian).
Gzovsky, M. V. (1975). fundamentals of tectono-
physics. Moscow: Nauka, 536 p. (in Russian).
heidbach, O., Barth, A., Connolly, P., Fuchs, K.,
Müller, B., Tingay, M., Reinecker, J., Sper-
ner, B., & Wenzel, F. (2004). Stress maps in a
minute: the 2004 World Stress Map release.
eos trans, 85(49), 521―529. https://doi.
org/10.1029/2004EO490001.
Li, X. & Tao, M. (2015). The influence of initial
stress on wave propagation and dynamic elas-
tic coefficients. geomechanics and engineer-
ing, 8(3), 377—390. https://doi.org/10.12989/
gae.2015.8.3.377.
Müller, B., Barth, A., heidbach, O., Reinecker, J.,
Sperner, B., Tingay, M., & Wenzel, F. (2005).
The World Stress Map-an essential and easy
accessible tool for geohazard assessment. in-
ternational workshop recent geodynamics,
georisk and sustainable Development in the
black sea to caspian region, baku, aiP, 825,
19—31.
Poulton, M. M. (2002). Neural networks as an in-
telligence amplification tool: A review of appli-
cations. geophysics, 67(3), 979—993. https://
doi.org/10.1190/1.1484539.
Reinecker, J., heidbach, O., & Müller, B. (2005).
The 2005 release of the World Stress Map. Re-
trieved from www.world-stress-map-org.
Teachavorasinskun, S., & VSPongvithayapanu, P.
(2016). Shear wave velocity of sands subject
to large strain triaxial loading. geomechanics
and engineering, 11(5), 713—723. https://doi.
org/10.12989/gae.2016.11.5.713.
Tromp, J., Marcondes, M. L., Wentzcovitch, R., &
Trampert, J. (2019). Effects of Induced Stress
on Seismic Waves: Validation Based on Ab In-
itio Calculations. Journal of geophysical re-
search: solid earth, 124(1), 729—741. https://
doi.org/10.1029/2018JB016778.
Vyzhva, S. A., Maslov, B. P., & Prodaivoda, G. T.
(2005). Effective elastic properties of nonlinear
multicomponent geological media. geofiziches-
kiy zhurnal, 27(6), 1012—1022 (in Russian).
Yin, h., & Rasolofosaon, P. (1994). Nonlinear and
linear elastic behavior of anisotropic rocks: Ul-
trasonic experiments versus Theoretical pre-
dictions. abstract, 64 seg meeting, los angeles,
expanded abstract, paper SL3.4, 1129—1132.
|