Self-stochasticity in boundary value problems of quantum mechanics

On the example of an initial-value boundary problem for the Schrödinger equation, a methodological problem of quantum mechanics has been discussed. It is shown that quantum mechanical problems can be reduced to difference equations with continuous time for which there exist so-called self-stochastic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Krasnyuk, I.B., Melnik, T.N., Yurchenko, V.M.
Формат: Стаття
Мова:English
Опубліковано: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2017
Назва видання:Физика и техника высоких давлений
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/168138
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Self-stochasticity in boundary value problems of quantum mechanics / I.B. Krasnyuk, T.N. Melnik, V.M. Yurchenko // Физика и техника высоких давлений. — 2017. — Т. 27, № 2. — С. 51-61. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:On the example of an initial-value boundary problem for the Schrödinger equation, a methodological problem of quantum mechanics has been discussed. It is shown that quantum mechanical problems can be reduced to difference equations with continuous time for which there exist so-called self-stochastic solutions. Hence, such solutions exist for quantum problems. These solutions are random function as time is large. It is shown that the Sharkovsky metric can be applied for computer simulation of limit distributions of random wave functions.