Методи побудови регресійних моделей на основі нечітких даних
Запропоновано метод побудови регресійних моделей для систем на основі нечітких правил у випадку, коли реакція систем представлена нечіткими даними. Розроблено алгоритм, який з прийнятною точністю будує адекватну кількість правил Такагі-Сугено регресійної моделі з використанням автоматичної стратегії...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
Назва видання: | Компьютерная математика |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/168359 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Методи побудови регресійних моделей на основі нечітких даних / С.В. Єршов, Т.І. Лико // Компьютерная математика. — 2015. — № 1. — С. 43-49. — Бібліогр.: 7 назв. — укр. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!