Initial-boundary problems for semilinear hiperbolic systems with singular coefficients

In the paper we use the framework of Colombeau algebras of generalized functions to study existence and uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system. Coefficients of the system as well as initial and boundary data are allowed to be strongl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Kmit, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169155
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Initial-boundary problems for semilinear hiperbolic systems with singular coefficients / I. Kmit // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 74-84. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169155
record_format dspace
spelling irk-123456789-1691552020-06-08T01:26:08Z Initial-boundary problems for semilinear hiperbolic systems with singular coefficients Kmit, I. In the paper we use the framework of Colombeau algebras of generalized functions to study existence and uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system. Coefficients of the system as well as initial and boundary data are allowed to be strongly singular, as the Dirac delta function and derivatives thereof. To obtain the existence-uniqueness result we prove a criterion of invertibilitv in the full version of the Colombeau algebras. 2005 Article Initial-boundary problems for semilinear hiperbolic systems with singular coefficients / I. Kmit // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 74-84. — Бібліогр.: 17 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169155 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the paper we use the framework of Colombeau algebras of generalized functions to study existence and uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system. Coefficients of the system as well as initial and boundary data are allowed to be strongly singular, as the Dirac delta function and derivatives thereof. To obtain the existence-uniqueness result we prove a criterion of invertibilitv in the full version of the Colombeau algebras.
format Article
author Kmit, I.
spellingShingle Kmit, I.
Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
Нелинейные граничные задачи
author_facet Kmit, I.
author_sort Kmit, I.
title Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_short Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_full Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_fullStr Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_full_unstemmed Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_sort initial-boundary problems for semilinear hiperbolic systems with singular coefficients
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/169155
citation_txt Initial-boundary problems for semilinear hiperbolic systems with singular coefficients / I. Kmit // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 74-84. — Бібліогр.: 17 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT kmiti initialboundaryproblemsforsemilinearhiperbolicsystemswithsingularcoefficients
first_indexed 2023-10-18T22:24:33Z
last_indexed 2023-10-18T22:24:33Z
_version_ 1796155439412412416