Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1

The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Mel'nyk, T.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169156
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169156
record_format dspace
spelling irk-123456789-1691562020-06-07T01:26:24Z Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 Mel'nyk, T.A. The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions. 2005 Article Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169156 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions.
format Article
author Mel'nyk, T.A.
spellingShingle Mel'nyk, T.A.
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
Нелинейные граничные задачи
author_facet Mel'nyk, T.A.
author_sort Mel'nyk, T.A.
title Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_short Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_full Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_fullStr Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_full_unstemmed Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_sort asymptotic analysis of the spectral neumann problem in thick multi-structure of type 3:1:1
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/169156
citation_txt Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT melnykta asymptoticanalysisofthespectralneumannprobleminthickmultistructureoftype311
first_indexed 2023-10-18T22:24:33Z
last_indexed 2023-10-18T22:24:33Z
_version_ 1796155439517270016