Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic problem in an unbounded domain tt. The existence of the global attractor for the trajectory dynamical system associated with this problem is proved. The symmetrization and stabilization proper...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169169 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains / H. Berestycki, M. Efendiev, S. Zelik // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 3-15. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169169 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1691692020-06-08T01:25:53Z Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains Berestycki, H. Efendiev, M. Zelik, S. We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic problem in an unbounded domain tt. The existence of the global attractor for the trajectory dynamical system associated with this problem is proved. The symmetrization and stabilization properties of positive solutions as |x| → ∞ oo are also established in three dimensional case Ω ⊂ R³. 2004 Article Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains / H. Berestycki, M. Efendiev, S. Zelik // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 3-15. — Бібліогр.: 27 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169169 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic problem in an unbounded domain tt. The existence of the global attractor for the trajectory dynamical system associated with this problem is proved. The symmetrization and stabilization properties of positive solutions as |x| → ∞ oo are also established in three dimensional case Ω ⊂ R³. |
format |
Article |
author |
Berestycki, H. Efendiev, M. Zelik, S. |
spellingShingle |
Berestycki, H. Efendiev, M. Zelik, S. Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains Нелинейные граничные задачи |
author_facet |
Berestycki, H. Efendiev, M. Zelik, S. |
author_sort |
Berestycki, H. |
title |
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains |
title_short |
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains |
title_full |
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains |
title_fullStr |
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains |
title_full_unstemmed |
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains |
title_sort |
dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169169 |
citation_txt |
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains / H. Berestycki, M. Efendiev, S. Zelik // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 3-15. — Бібліогр.: 27 назв. — англ. |
series |
Нелинейные граничные задачи |
work_keys_str_mv |
AT berestyckih dynamicalapproachforpositivesolutionsofsemilinearellipticproblemsinunboundeddomains AT efendievm dynamicalapproachforpositivesolutionsofsemilinearellipticproblemsinunboundeddomains AT zeliks dynamicalapproachforpositivesolutionsofsemilinearellipticproblemsinunboundeddomains |
first_indexed |
2023-10-18T22:24:35Z |
last_indexed |
2023-10-18T22:24:35Z |
_version_ |
1796155440890904576 |