Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains

We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic problem in an unbounded domain tt. The existence of the global attractor for the trajectory dynamical system associated with this problem is proved. The symmetrization and stabilization proper...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Berestycki, H., Efendiev, M., Zelik, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169169
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains / H. Berestycki, M. Efendiev, S. Zelik // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 3-15. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169169
record_format dspace
spelling irk-123456789-1691692020-06-08T01:25:53Z Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains Berestycki, H. Efendiev, M. Zelik, S. We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic problem in an unbounded domain tt. The existence of the global attractor for the trajectory dynamical system associated with this problem is proved. The symmetrization and stabilization properties of positive solutions as |x| → ∞ oo are also established in three dimensional case Ω ⊂ R³. 2004 Article Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains / H. Berestycki, M. Efendiev, S. Zelik // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 3-15. — Бібліогр.: 27 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169169 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic problem in an unbounded domain tt. The existence of the global attractor for the trajectory dynamical system associated with this problem is proved. The symmetrization and stabilization properties of positive solutions as |x| → ∞ oo are also established in three dimensional case Ω ⊂ R³.
format Article
author Berestycki, H.
Efendiev, M.
Zelik, S.
spellingShingle Berestycki, H.
Efendiev, M.
Zelik, S.
Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
Нелинейные граничные задачи
author_facet Berestycki, H.
Efendiev, M.
Zelik, S.
author_sort Berestycki, H.
title Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
title_short Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
title_full Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
title_fullStr Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
title_full_unstemmed Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
title_sort dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains
publisher Інститут прикладної математики і механіки НАН України
publishDate 2004
url http://dspace.nbuv.gov.ua/handle/123456789/169169
citation_txt Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains / H. Berestycki, M. Efendiev, S. Zelik // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 3-15. — Бібліогр.: 27 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT berestyckih dynamicalapproachforpositivesolutionsofsemilinearellipticproblemsinunboundeddomains
AT efendievm dynamicalapproachforpositivesolutionsofsemilinearellipticproblemsinunboundeddomains
AT zeliks dynamicalapproachforpositivesolutionsofsemilinearellipticproblemsinunboundeddomains
first_indexed 2023-10-18T22:24:35Z
last_indexed 2023-10-18T22:24:35Z
_version_ 1796155440890904576