On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
There is proved the existence and the uniqueness of the solution of the nonlinear H.Amann problem for the parabolic-elliptic equations for the small time in the Holder spaces, the estimates for the solution are derived, the smoothness on t of the potential φ is obtained.
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169170 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces / G.I. Bizhanova // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 16-25. — Бібліогр.: 6 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169170 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1691702020-06-08T01:25:48Z On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces Bizhanova, G.I. There is proved the existence and the uniqueness of the solution of the nonlinear H.Amann problem for the parabolic-elliptic equations for the small time in the Holder spaces, the estimates for the solution are derived, the smoothness on t of the potential φ is obtained. 2004 Article On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces / G.I. Bizhanova // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 16-25. — Бібліогр.: 6 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169170 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
There is proved the existence and the uniqueness of the solution of the nonlinear H.Amann problem for the parabolic-elliptic equations for the small time in the Holder spaces, the estimates for the solution are derived, the smoothness on t of the potential φ is obtained. |
format |
Article |
author |
Bizhanova, G.I. |
spellingShingle |
Bizhanova, G.I. On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces Нелинейные граничные задачи |
author_facet |
Bizhanova, G.I. |
author_sort |
Bizhanova, G.I. |
title |
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces |
title_short |
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces |
title_full |
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces |
title_fullStr |
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces |
title_full_unstemmed |
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces |
title_sort |
on the solvability of the nonlinear problem for elliptic-parabolic system of the equations in hölder spaces |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169170 |
citation_txt |
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces / G.I. Bizhanova // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 16-25. — Бібліогр.: 6 назв. — англ. |
series |
Нелинейные граничные задачи |
work_keys_str_mv |
AT bizhanovagi onthesolvabilityofthenonlinearproblemforellipticparabolicsystemoftheequationsinholderspaces |
first_indexed |
2023-10-18T22:24:35Z |
last_indexed |
2023-10-18T22:24:35Z |
_version_ |
1796155440995762176 |