Минимальные ветви решений нелинейных уравнений и асимптотические регуляризаторы

Получены достаточные условия существования и единственности решений максимального порядка малости нелинейных уравнений, зависящих от параметра. Введены понятия левого и правого асимптотического регуляризатора линейной оператор-функции В(λ), отвечающей линеаризации исходного нелинейного уравнения (1)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Сидоров, Н.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169186
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Минимальные ветви решений нелинейных уравнений и асимптотические регуляризаторы / Н.А. Сидоров // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 161-164. — Бібліогр.: 7 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Получены достаточные условия существования и единственности решений максимального порядка малости нелинейных уравнений, зависящих от параметра. Введены понятия левого и правого асимптотического регуляризатора линейной оператор-функции В(λ), отвечающей линеаризации исходного нелинейного уравнения (1). В случае, когда λ = 0 является фредгольмовой точкой В(λ), дан способ построения таких регуляризаторов. На этой основе предложен новый метод последовательных приближений. сходящийся к ветви максимального порядка малости при нулевом начальном приближении. В отличие от работ (5, 6] в этом методе не нужно знать хорошее начальное приближение искомой ветви.