Coagulation-fragmentation models with diffusion

Consider systems of a very large number of particles, being suspended in a fluid, for example, which can diffuse and coagulate to form clusters that, in turn, can merge to form larger clusters or can break apart into smaller ones. Models of cluster growth arise in a variety of situations, for exampl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Amann, H.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2000
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169232
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Coagulation-fragmentation models with diffusion / H. Amann // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 3-8. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169232
record_format dspace
spelling irk-123456789-1692322020-06-10T01:25:40Z Coagulation-fragmentation models with diffusion Amann, H. Consider systems of a very large number of particles, being suspended in a fluid, for example, which can diffuse and coagulate to form clusters that, in turn, can merge to form larger clusters or can break apart into smaller ones. Models of cluster growth arise in a variety of situations, for example in aerosol science, atmospheric physics, colloidal chemistry, or polymer science, etc. The theory originates in the work of M.V. Smoluchowski [9], [10] and has found various generalizations, extensions, and applications in the physical literature 2000 Article Coagulation-fragmentation models with diffusion / H. Amann // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 3-8. — Бібліогр.: 11 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169232 ru Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
description Consider systems of a very large number of particles, being suspended in a fluid, for example, which can diffuse and coagulate to form clusters that, in turn, can merge to form larger clusters or can break apart into smaller ones. Models of cluster growth arise in a variety of situations, for example in aerosol science, atmospheric physics, colloidal chemistry, or polymer science, etc. The theory originates in the work of M.V. Smoluchowski [9], [10] and has found various generalizations, extensions, and applications in the physical literature
format Article
author Amann, H.
spellingShingle Amann, H.
Coagulation-fragmentation models with diffusion
Нелинейные граничные задачи
author_facet Amann, H.
author_sort Amann, H.
title Coagulation-fragmentation models with diffusion
title_short Coagulation-fragmentation models with diffusion
title_full Coagulation-fragmentation models with diffusion
title_fullStr Coagulation-fragmentation models with diffusion
title_full_unstemmed Coagulation-fragmentation models with diffusion
title_sort coagulation-fragmentation models with diffusion
publisher Інститут прикладної математики і механіки НАН України
publishDate 2000
url http://dspace.nbuv.gov.ua/handle/123456789/169232
citation_txt Coagulation-fragmentation models with diffusion / H. Amann // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 3-8. — Бібліогр.: 11 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT amannh coagulationfragmentationmodelswithdiffusion
first_indexed 2023-10-18T22:24:44Z
last_indexed 2023-10-18T22:24:44Z
_version_ 1796155447551459328