Local solvability of fully nonlinear parabolic problems of higher order
The paper is devoted to reduction of fully nonlinear parabolic problems of high order to operator equations involving operator satisfying (S₊) condition. The topological methods could be used to investigate solvability of such operator equations. The theorems of uniqueness and local existence for so...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2000
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169252 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Local solvability of fully nonlinear parabolic problems of higher order / I.B. Romanenko // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 156-161. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The paper is devoted to reduction of fully nonlinear parabolic problems of high order to operator equations involving operator satisfying (S₊) condition. The topological methods could be used to investigate solvability of such operator equations. The theorems of uniqueness and local existence for solution of boundary value problem, proved by topological approach are formulated in the paper. The results formulated are generalizations of analogous facts proved in [1]. |
---|