Attractors of reaction-diffusion equations with nonmonotone nonlinearity
In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2000
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169258 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons. |
---|