Attractors of reaction-diffusion equations with nonmonotone nonlinearity

In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Valero, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2000
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169258
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169258
record_format dspace
spelling irk-123456789-1692582020-06-10T01:26:12Z Attractors of reaction-diffusion equations with nonmonotone nonlinearity Valero, J. In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons. 2000 Article Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ. 0236-0497 2000 Mathematics Subject Classification. 58F39, 35B40, 35K55, 35K57 http://dspace.nbuv.gov.ua/handle/123456789/169258 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons.
format Article
author Valero, J.
spellingShingle Valero, J.
Attractors of reaction-diffusion equations with nonmonotone nonlinearity
Нелинейные граничные задачи
author_facet Valero, J.
author_sort Valero, J.
title Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_short Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_full Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_fullStr Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_full_unstemmed Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_sort attractors of reaction-diffusion equations with nonmonotone nonlinearity
publisher Інститут прикладної математики і механіки НАН України
publishDate 2000
url http://dspace.nbuv.gov.ua/handle/123456789/169258
citation_txt Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT valeroj attractorsofreactiondiffusionequationswithnonmonotonenonlinearity
first_indexed 2023-10-18T22:24:47Z
last_indexed 2023-10-18T22:24:47Z
_version_ 1796155450301874176