Attractors of reaction-diffusion equations with nonmonotone nonlinearity
In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2000
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169258 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169258 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1692582020-06-10T01:26:12Z Attractors of reaction-diffusion equations with nonmonotone nonlinearity Valero, J. In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons. 2000 Article Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ. 0236-0497 2000 Mathematics Subject Classification. 58F39, 35B40, 35K55, 35K57 http://dspace.nbuv.gov.ua/handle/123456789/169258 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons. |
format |
Article |
author |
Valero, J. |
spellingShingle |
Valero, J. Attractors of reaction-diffusion equations with nonmonotone nonlinearity Нелинейные граничные задачи |
author_facet |
Valero, J. |
author_sort |
Valero, J. |
title |
Attractors of reaction-diffusion equations with nonmonotone nonlinearity |
title_short |
Attractors of reaction-diffusion equations with nonmonotone nonlinearity |
title_full |
Attractors of reaction-diffusion equations with nonmonotone nonlinearity |
title_fullStr |
Attractors of reaction-diffusion equations with nonmonotone nonlinearity |
title_full_unstemmed |
Attractors of reaction-diffusion equations with nonmonotone nonlinearity |
title_sort |
attractors of reaction-diffusion equations with nonmonotone nonlinearity |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2000 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169258 |
citation_txt |
Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ. |
series |
Нелинейные граничные задачи |
work_keys_str_mv |
AT valeroj attractorsofreactiondiffusionequationswithnonmonotonenonlinearity |
first_indexed |
2023-10-18T22:24:47Z |
last_indexed |
2023-10-18T22:24:47Z |
_version_ |
1796155450301874176 |