On solvability of the variational inequality with +-coercive multivalued mappings

In this work the theory of variational inequalities with multivalued operators is extended for the wider of multivalued maps from the re°exive Banach space to its dual one. In particular, we relax the restriction on boundness of operators and on same properties of convergence. This operator class co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автор: Solonoukha, O.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 1999
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169283
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On solvability of the variational inequality with +-coercive multivalued mappings / O.V. Solonoukha // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 126-129. — Бібліогр.: 10 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169283
record_format dspace
spelling irk-123456789-1692832020-06-10T01:26:18Z On solvability of the variational inequality with +-coercive multivalued mappings Solonoukha, O.V. In this work the theory of variational inequalities with multivalued operators is extended for the wider of multivalued maps from the re°exive Banach space to its dual one. In particular, we relax the restriction on boundness of operators and on same properties of convergence. This operator class contains the bounded pseudomonotone maps, the maximal monotone maps on interior of domain, the s{weakly locally bounded generalized pseudomonotone maps and other. 1999 Article On solvability of the variational inequality with +-coercive multivalued mappings / O.V. Solonoukha // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 126-129. — Бібліогр.: 10 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169283 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this work the theory of variational inequalities with multivalued operators is extended for the wider of multivalued maps from the re°exive Banach space to its dual one. In particular, we relax the restriction on boundness of operators and on same properties of convergence. This operator class contains the bounded pseudomonotone maps, the maximal monotone maps on interior of domain, the s{weakly locally bounded generalized pseudomonotone maps and other.
format Article
author Solonoukha, O.V.
spellingShingle Solonoukha, O.V.
On solvability of the variational inequality with +-coercive multivalued mappings
Нелинейные граничные задачи
author_facet Solonoukha, O.V.
author_sort Solonoukha, O.V.
title On solvability of the variational inequality with +-coercive multivalued mappings
title_short On solvability of the variational inequality with +-coercive multivalued mappings
title_full On solvability of the variational inequality with +-coercive multivalued mappings
title_fullStr On solvability of the variational inequality with +-coercive multivalued mappings
title_full_unstemmed On solvability of the variational inequality with +-coercive multivalued mappings
title_sort on solvability of the variational inequality with +-coercive multivalued mappings
publisher Інститут прикладної математики і механіки НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/169283
citation_txt On solvability of the variational inequality with +-coercive multivalued mappings / O.V. Solonoukha // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 126-129. — Бібліогр.: 10 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT solonoukhaov onsolvabilityofthevariationalinequalitywithcoercivemultivaluedmappings
first_indexed 2023-10-18T22:24:51Z
last_indexed 2023-10-18T22:24:51Z
_version_ 1796155452715696128