Palais-Smale condition for chiral fields
The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite di...
Збережено в:
Дата: | 1999 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
1999
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169284 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169284 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1692842020-06-10T01:26:07Z Palais-Smale condition for chiral fields Suvorov, S.G. The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains. 1999 Article Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169284 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains. |
format |
Article |
author |
Suvorov, S.G. |
spellingShingle |
Suvorov, S.G. Palais-Smale condition for chiral fields Нелинейные граничные задачи |
author_facet |
Suvorov, S.G. |
author_sort |
Suvorov, S.G. |
title |
Palais-Smale condition for chiral fields |
title_short |
Palais-Smale condition for chiral fields |
title_full |
Palais-Smale condition for chiral fields |
title_fullStr |
Palais-Smale condition for chiral fields |
title_full_unstemmed |
Palais-Smale condition for chiral fields |
title_sort |
palais-smale condition for chiral fields |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
1999 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169284 |
citation_txt |
Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. |
series |
Нелинейные граничные задачи |
work_keys_str_mv |
AT suvorovsg palaissmaleconditionforchiralfields |
first_indexed |
2023-10-18T22:24:51Z |
last_indexed |
2023-10-18T22:24:51Z |
_version_ |
1796155452821602304 |