Palais-Smale condition for chiral fields

The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite di...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автор: Suvorov, S.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 1999
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169284
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169284
record_format dspace
spelling irk-123456789-1692842020-06-10T01:26:07Z Palais-Smale condition for chiral fields Suvorov, S.G. The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains. 1999 Article Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169284 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains.
format Article
author Suvorov, S.G.
spellingShingle Suvorov, S.G.
Palais-Smale condition for chiral fields
Нелинейные граничные задачи
author_facet Suvorov, S.G.
author_sort Suvorov, S.G.
title Palais-Smale condition for chiral fields
title_short Palais-Smale condition for chiral fields
title_full Palais-Smale condition for chiral fields
title_fullStr Palais-Smale condition for chiral fields
title_full_unstemmed Palais-Smale condition for chiral fields
title_sort palais-smale condition for chiral fields
publisher Інститут прикладної математики і механіки НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/169284
citation_txt Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT suvorovsg palaissmaleconditionforchiralfields
first_indexed 2023-10-18T22:24:51Z
last_indexed 2023-10-18T22:24:51Z
_version_ 1796155452821602304